MSR C. L. HOS

Сору /

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

a a	N 65 - 84 048	
ě	(ACCESSION NUMBER)	(THRU)
ě	121	Tine
Ļ	(PAGES)	(CODE)
FACIL	(NASA CR OR TMX OR AD NUMBER)	(CATEGORY)

CALCULATION OF THE FRICTIONLESS INCOMPRESSIBLE FLOW FOR

A GIVEN TWO-DIMENSIONAL CASCADE (DIRECT PROBLEM)

By Hermann Schlichting

Translation of "Berechnung der reibungslosen inkompressiblen Strömung für ein vorgegebenes ebenes Schaufelgitter." VDI - Forschungsheft 447, Edition B, Vol. 21, 1955.

NASA FILE COPY

loan expires on last

date stamped on back cover.
PLEASE RETURN TO
DIVISION OF RESEARCH INFORMATION
NATIONAL AERONAUTICS

AND SPACE ADMINISTRATION

Washington 25, D. C.

(1) TMX# 56364

LANGLEY RESEARCH CENTER

October 1958

CALCULATION OF THE FRICTIONLESS INCOMPRESSIBLE FLOW FOR

A GIVEN TWO-DIMENSIONAL CASCADE (DIRECT PROBLEM)

By Hermann Schlichting

ABSTRACT

A simple method for calculating the frictionless incompressible flow through a two-dimensional cascade is described for the case where the blade and cascade geometries are prescribed and the aerodynamic coefficients and pressure distributions are desired. The calculation method which makes use of a continuous vortex and source-sink distributions is set up in such a manner that each geometric parameter can be varied independently. Measured values of pressure distributions agree well with those calculated by present theory.

INDEX HEADINGS

Flow, Incompressible	1.1.1
Cascades	1.4.5
Compressor Flow Theory and Experiment	3.6.1
Turbine Flow Theory and Experiment	3.7.1

CALCULATION OF THE FRICTIONLESS INCOMPRESSIBLE FLOW FOR

A GIVEN TWO-DIMENSIONAL CASCADE (DIRECT PROBLEM)*

By Hermann Schlichting

1. INTRODUCTION¹

For further developments in jet-engine design, a deeper understanding of the physical flow processes is indispensable today. For axial-flow machines, the flow problems are centered around the so-called cascade obtained by developing a coaxial cylinder section through the rotor and the stator. Necessarily, the starting point for all investigations on cascade flows must be the incompressible flow through a two-dimensional cascade. Only when this flow can be controlled, can one hope to do fundamental research regarding the remaining influences as, for instance, wall and clearance losses, compartmenting, compressibility, and centrifugal forces.

At the Institute for Flow Mechanics of the Technical Academy of Braunschweig, systematic cascade investigations, theoretical as well as experimental (ref. 1), have been under way for several years. Earlier theoretical investigations on cascade flows were based throughout on frictionless fluids; the above named investigations took into account, for the first time, the friction of the fluid also, by means of boundary-layer theory considerations (ref. 2). This makes it possible

^{*&}quot;Berechnung der reibungslosen inkompressiblen Strömung für ein vorgegebenes ebenes Schaufelgitter." VDI - Forschungsheft 447, Edition B, Vol. 21, 1955.

The author has lectured on the method in excerpt at the flow conference of June 9-11, 1954 in Zürich, arranged jointly by the VDI - Branch Committee for Flow Research, the Swiss Engineers' and Architects' Association, and the Confederate Technical Academy Zürich. The investigations were supported by the German Research Association. L. Speidel tested the calculation method within the scope of the cascade research program of the Institute. The measurements used for comparison with the theory (section 6) have been taken from as yet unpublished voluminous experimental cascade investigations by N. Scholz. Contributions to these investigations in the form of theses and research memoranda of the Mechanical Engineering Department of the Technical Academy of Brauschweig were made by K. H. Grewe (1951), J. Vahlbruch (1950), W. Richter (1952), and H. Schäffer (1951).

to determine theoretically the loss coefficients of a cascade which govern the efficiency of the turbo-machine. The aim of the cascade investigations is to indicate, for a given application, cascades of optimum efficiency. For this purpose, the connection between the geometric and the aerodynamic parameters of a cascade must be known.

The geometric parameters of a two-dimensional cascade are, according to figures 1(a) to 1(c), the blade profile and the cascade geometry which is determined by the pitch ratio t/l (where t denotes the spacing, l the blade chord), and by the blade angle $\beta_{\rm S}$. As aerodynamic parameters we designate the inflow and outflow velocities W_1 and W_2 , the inflow and outflow angles β_1 and β_2 , the pressure change $\Delta p = p_2 - p_1$ in the cascade where p_1 and p_2 denote the static pressures in front of and behind the cascade, the pressure distribution p(x) on a cascade blade, and the energy loss in the cascade which, for incompressible flow, is best measured as total-pressure loss $\Delta p_{\rm g} = p_{\rm gl} - p_{\rm g2}$, with

 p_{gl} and p_{g2} denoting the total pressures in front of and behind the cascade. From the pressure distribution on the cascade blade we may then determine the resultant blade force.

The connection between the geometric and aerodynamic parameters is found in two steps: (1) determination of the pressure distribution on the blade, according to potential theory, for frictionless flow and (2) calculation of the blade-boundary layer and the flow losses from this pressure distribution. Here we shall treat only the first step.² Two main problems must be distinguished: for the first main problem, β_1 and β_2 are thus given the velocity triangle; the cascade and blade geometry and the pressure distribution on the blade are the desired quantities (for instance, with the secondary condition that the distribution should be "as favorable as possible with regard to the flow losses"). For the second main problem the cascade and blade geometry are given and the pressure distribution on the blade, the blade force, and the outflow direction as a function of the inflow direction are desired. For the first main problem, therefore, the aerodynamic parameters of the cascade are given and the geometric parameters are desired; whereas the second main problem represents the inverse case. The first main problem is applied chiefly for practical design problems (for instance, selection of an optimum cascade for given operational conditions); the second main problem is applied in systematic cascade

²L. Speidel (ref. 3) reported recently on voluminous results regarding systematic calculations of the loss coefficients (second step) for unstaggered cascades. Communication of results for staggered cascades will follow.

investigations where, for instance, the geometric cascade parameters are varied in order to find the most favorable cascades. Also, the second main problem is applied for "checking" a cascade of predetermined geometry, which frequently occurs in practice.

For the first main problem (inverse problem), N. Scholz (ref. 4) indicated recently a convenient calculation method. In what follows, we shall treat the second main problem (direct problem) exclusively. Both methods are based on the interpretation of cascade flow according to lifting-surface theory where, in contrast to the tunnel flow, the individual blade is interpreted as an airfoil and where the mutual interference of the blades plays an important part. For the single airfoil, the connection between the geometric and the aerodynamic parameters has been largely clarified by theoretical and experimental investigations. For the cascade, however, we are still a long way from having deep insight, due to the larger number of geometric and aerodynamic parameters.

The potential flow of a two-dimensional cascade may be calculated with the aid of conformal mapping or according to the singularity method.

For the conformal mapping which is limited exclusively to the two-dimensional problem, the flow around the infinite row of congruent blades is reduced to the well-known circular-cylinder flow by means of a complex transformation function (cf. F. Weinig, ref. 5; I. E. Garrick, ref. 6; and W. Traupel, ref. 7). This method does give an exact solution of the flow problem but is so troublesome with respect to numerical performance, even for simple blade shapes, that the investigation of a larger number of cascades is, in practice, not possible. In particular, neither the first nor the second main problem can be solved directly by means of this method; nor can a row of cascades be investigated where only one geometric cascade parameter varies - for instance, the pitch ratio - but all others are to be fixed.

In the singularity method, the blade contour is replaced by singularities (vortices, sources, and sinks). This method is fundamentally suitable for the three-dimensional case also; it was used by N. Scholz (ref. 4) for the solution of the first main problem and will likewise be taken here as a basis for the solution of the second main problem. The singularity method offers the opportunity to make, in a simple manner, the transition from the single blade to the blade in cascade configuration and thus to express the influence of the cascade. For the single airfoil this method was first applied by W. Birnbaum (ref. 8) and H. Glauert (ref. 9); later, it was developed to great perfection by F. Riegels (ref. 10) and H. J. Allen (ref. 11). The first applications to a cascade stem from M. Schilhansl (ref. 12) and A. Betz (ref. 13). J. Ackeret (ref. 14), E. Pistolesi (ref. 15), V. Lieblein (ref. 16), and R. A. Spurr and H. J. Allen (ref. 17) contributed to the future improvement of this method for the cascade. S. Katzoff, R. S. Finn,

•••••

and J. C. Laurence (ref. 18) work partly with the conformal mapping, partly with the singularity method which is rather troublesome numerically. In some cases, for simplification of the calculation, vortex and source-sink distributions are assumed along the length of the blade chord and are arranged on a straight blade chord line instead of on the mean chamber line. Just as in the theory of W. Birnbaum and H. Glauert, this means a good approximation only for moderate chamber of the blades, as in the case of compressor cascades. We shall also use this simplification; however, an extension to large blade cambers, like those in turbine cascades, is possible in principle.

For the rest, we choose for the solution of the second main problem a method which has already proved satisfactory for the single airfoil (refs. 19 and 20). From this application it is known that the exact solution leads to an integral equation which should be satisfied along the entire prescribed blade contour but may be solved approximately by satisfying it only at a few discrete points (the so-called control points). Thereby the solution of the integral equation is reduced to the solution of a linear system of equations. Since convenient methods with high accuracy are known for determining the velocity distribution on the single profile (refs. 10 and 11), we shall, in the calculation method for the cascade, omit representing simultaneously the single profile with great accuracy. Rather we shall emphasize a good expression of the influence of the "cascade geometry," that is, the pitch ratio and the stagger angle.

The method for determining the aerodynamic coefficients for a prescribed cascade described below leads to two systems of linear equations for the coefficients of the circulation distribution and the source distribution (usually two systems of six equations with six unknowns each). Certain fixed values which appear in these systems of equations and are rather hard to calculate, were listed universally in tables as functions of the pitch ratio t/l and of the stagger angle λ (so-called downwash tables). By this means, the greatest part of the calculation is taken care of, once and for all, for every individual case of a cascade; there remains only the solution of the two systems of equations and, then, the determination of the aerodynamic coefficients and the pressure distribution. According to experience up till now, the complete calculation of a cascade according to potential theory (aerodynamic coefficients and pressure distribution) for six different inflow angles requires about 20 to 25 hours for a trained computer.

³The calculation method served as a basis for systematic theoretical investigations regarding the loss coefficients of cascades; a few results had already been given in references 1 and 3.

2. BASIS OF THE METHOD

2.1 The Kinematic Flow Conditions

The flow of a frictionless incompressible fluid about a prescribed body is obtained, according to the singularity method, by replacing the body by a suitable source-sink and vortex distribution in its interior and superimposing a translational flow on this field. The singularities are determined from the kinematic flow condition, according to which on the entire boundary of the body the resulting velocity, that is, the sum of the translational velocity and the velocity induced by the sources and vortices is tangential to the contour. In order to produce the flow about a cascade blade according to this method, we choose a suitable linear-type continuous source distribution q(x) and a vortex distribution $\gamma(x)$, where x signifies the coordinate in the direction of the blade chord l.

The general case of a profile of finite thickness and a camber different from zero may be represented, for moderate thicknesses and cambers, by superposition of a thickness distribution and a mean camber line (figs. 2(a) to 2(e)). If $y_u(x)$ and $y_o(x)$ signify the profile coordinates perpendicular to the x-direction on the lower and upper sides of the profile, respectively, and if $y_d(x)$ and $y_s(x)$ are the corresponding coordinates of the thickness distribution or the mean camber line, there applies

$$y_s(x) = \frac{1}{2} [y_0(x) + y_u(x)]$$
 (1)

and

$$y_{d}(x) = \frac{1}{2} [y_{0}(x) - y_{u}(x)]$$
 (2)

According to the singularity method, we may represent the flow around a cambered, lift-producing profile as a superposition of the flow about the uncambered profile without incidence and the flow about the mean camber line with incidence. We have therefore to superimpose: (1) the flow about the uncambered profile (source distribution q(x) and the velocity component U_{∞} of the translational flow parallel to the chord) and (2) the flow about the mean camber line (circulation distribution $\gamma(x)$ and the translational flow which consists of the components V_{∞} and U_{∞} .

Strictly speaking, the singularity distributions q and γ should be placed on the mean camber line. For moderate heights of camber f,

however, they may be located with good approximation on the profile chord, as mentioned before; considerable simplification of the calculation is thus obtained. The range of application of the method remains thereby limited to cascades of moderate camber (about $f/l \leq 0.1$ to 0.15). For compressor cascades this is sufficient in most cases, whereas the calculation method for strongly cambered turbine cascades requires an extension.

The integral over the circulation distribution $\gamma(x)$ per unit length gives the total circulation Γ of a blade according to

$$\Gamma = \int_{\mathbf{x}=0}^{l} \gamma(\mathbf{x}) d\mathbf{x}$$
 (3)

Hence follows, according to W. Kutta and N. Joukowsky, the lift A of a blade per unit width as

$$A = \rho W_{\infty} \Gamma = \rho W_{\infty} \int_{x=0}^{l} \gamma(x) dx$$
 (4)

with ρ as density of the fluid and $W_{\infty} = \sqrt{U_{\infty}^2 + V_{\infty}^2}$ as amount of the translational velocity. For the single profile, the lift A acts perpendicular to W_{∞} . Equation (4) likewise applies to the cascade if we understand by W_{∞} the vectorial mean of the inflow velocity W_1 and the outflow velocity W_2 . (Compare fig. 1(a).) The source-sink distribution q(x) must satisfy the condition

$$\int_{\mathbf{x}=0}^{l} q(\mathbf{x}) d\mathbf{x} = 0$$
 (5)

so that a closed contour (uncambered profile) results for the thickness distribution.

The kinematic flow condition for the relationship between the prescribed contour and the pertaining singularity distribution likewise may be split up into two conditions, corresponding to the decomposition of the profiles into the mean camber line and the thickness distribution. If u and v denote the x- and the y-component of the velocities induced by the vortex and by the source-sink distribution, the kinematic flow condition for the mean camber line according to figure 3(a) (first kinematic flow condition) reads

$$dy_{s}/dx = (V_{\infty} + v)/(U_{\infty} + u)$$
 (6)

For the thickness distribution, the source distribution q(x) lies, according to figure 3(b), on the profile chord. Here the condition must be satisfied that the contour is identical with the streamline which separates the external translational flow from the internal source-sink flow. By applying the continuity equation to the area thickly outlined in figure 3(b), we obtain

$$(U_{\infty} + u)y_{d} + \frac{1}{2}q dx = (U_{\infty} + u)(y_{d} + \frac{dy_{d}}{dx} dx)$$

or

$$dy_d/dx = q(x)/2(U_\infty + u)$$
 (7)

as the second kinematic flow condition. Here, too, we shall take the values of u and v, not on the contour, but on the blade chord (thus, for y = 0). Equations (6) and (7) apply in the same manner for the single profile and for the blade in the cascade configuration. The influence of the cascade is contained implicitly in the induced velocities u and v. The single profile results as the limiting case of a cascade with the pitch ratio $t/l = \infty$.

2.2 The Induced Velocities

For a prescribed cascade we calculate, first, from equations (6) and (7) the singularity distributions $\gamma(x)$ and q(x) and, next, from these, the aerodynamic coefficients. The first step of this calculation (determination of $\gamma(x)$ and q(x)) is rather laborious since the induced velocities must first be determined from Biot-Savart's law. The second step (determination of the aerodynamic coefficients for known circulation distribution), in contrast, proves to be very simple.

For the single profile (characterized by subscript E) which extends from x=0 to x=l (compare figs. 2(a) to 2(e)) and has a circulation distribution $\gamma(x)$ and a source-sink distribution q(x) along the chord, we obtain for the induced velocity $w_E(z)$ at an arbitrary point of the x,y-plane, in complex notation

$$w_{E}(z) = u_{E} - iv_{E} = \frac{1}{2\pi} \int_{x'=0}^{l} \frac{q(x') + i\gamma(x')}{z - x'} dx'$$
 (8)

where x and x' denote, respectively, the real coordinates of the control point and the running point along the source distribution. According to assumption, the induced velocity is needed only on the chord, that is, for z = x with $0 \le x \le l$. This velocity is, according to equation (8)

$$w_{E}(x,0) = \frac{1}{2\pi} \int_{x'=0}^{l} \frac{q(x') + i\gamma(x')}{x - x'} dx'$$
 (9)

with a singularity at x' = x. The integral is to be interpreted as a Cauchy main value. If the induced velocity is split up into the contributions of the vortex and source distributions (denoted by subscripts γ and q), that is, if we write

$$u_{E} = u_{\gamma E} + u_{qE} \qquad v_{E} = v_{\gamma E} + v_{qE} \qquad (10)$$

there follows from equation (9)

$$u_{\gamma E} = \pm \frac{1}{2} \gamma(x)$$
 $v_{\gamma E} = \frac{1}{2\pi} \int_{x'=0}^{l} \frac{\gamma(x')}{x'-x} dx'$ (11)

and

$$u_{qE} = \frac{1}{2\pi} \int_{x'=0}^{l} \frac{q(x')}{x-x'} dx' \qquad v_{qE} = \pm \frac{1}{2} q(x)$$
 (12)

The plus sign applies for the upper side, the minus sign for the lower side of the profile.

For the cascade whose geometry is fixed, according to figure l(b), by the angle of stagger λ and the pitch ratio t/l, we obtain, if $\gamma(x)$ and q(x) are prescribed along each of the blade chords, the following expression for the induced velocity field (compare E. Pistolesi (ref. 15) or N. Scholz (ref. 4)):

$$w(z) = \frac{e^{i\lambda}}{2t} \int_{x'=0}^{l} \left[q(x') + i\gamma(x') \right] \coth \left(\pi \frac{z - x'}{t} e^{i\lambda} \right) dx'$$
 (13)

or for the value on the chord (z = x)

$$w(x,0) = u(x) - iv(x)$$

$$= \frac{e^{i\lambda}}{2t} \int_{x'=0}^{l} \left[q(x') + i\gamma(x') \right] \coth \left(\pi \frac{x - x'}{t} e^{i\lambda} \right) dx'$$
(14)

This integral also is to be interpreted as a Cauchy main value. For the limiting case $t/l \rightarrow \infty$, equation (14) is transformed into equation (9) for the single airfoil.

If we now visualize the expressions resulting for the induced velocities u and v (for the single airfoil equations (11) and (12), for the cascade by splitting-up of equation (14)) as introduced into equations (6) and (7), we recognize that from them two coupled integral equations for $\gamma(x)$ and $\gamma(x)$ result. An analytic or an exact numerical solution of these integral equations does not appear possible for the general case of an arbitrary cascade. We therefore choose an approximation method where we satisfy the two kinematic flow conditions which have to be fulfilled over the entire length of the blade chord $0 \le x \le l$, only at a few discrete control points. Thus we reduce the solution of the integral equations to the solution of two systems of linear equations for certain free coefficients of the circulation and source distribution. We shall discuss below this method of control points, first, for the case of the single blade and shall transfer it later to the cascade.

3. PERFORMANCE OF THE CALCULATION FOR THE SINGLE PROFILE

3.1 Expansion in Series According to H. Glauert

For the single profile, the angle of attack α_{∞} of the chord with respect to the direction of the translational flow, according to figure 2(b) is, generally, small; thus $u \ll U_{\infty}$. We may therefore simplify equations (6) and (7) by neglecting u compared to U_{∞} . Furthermore, we may replace the y-component of the induced velocity $v_{E} = v_{\gamma E} + v_{qE}$ by $v_{E} = v_{\gamma E}$ because on both sides of the chord, according to

equation (12), $\,{\rm v_{qE}}\,$ has opposite signs, thus is, on the average, equal to zero on the chord. Thus, the simplified kinematic flow conditions for the single profile read

$$dy_{s}/dx = (V_{\infty} + v_{\gamma E})/U_{\infty}$$
 (15)

and

$$dy_d/dx = q(x)/2U_{\infty}$$
 (16)

By the simplification we perceive that, first, both conditions are now independent of one another (the first contains only the circulation distribution, the second only the source distribution) and, second, that now only the first condition represents an integral equation for $\gamma(x)$ whereas q(x) may be determined from the second condition by a simple quadrature. Both circumstances contribute considerably to facilitating the calculation.

Another circumstance which makes the calculation for the single profile much simpler than that for the cascade is the fact that, if $\gamma(x)$ and q(x) are suitably selected, the integrals for the induced velocities on the single airfoil may be evaluated analytically according to equations (11) and (12), which is impossible for the corresponding integrals of the cascade according to equation (14). This is the more significant, as in both cases these integrals contain for the induced velocities a singularity which is rather inconvenient for a numerical quadrature.

In order to be able to calculate the induced velocities for the single profile conveniently, we expand $\gamma(x)$ and q(x) according to H. Glauert (ref. 9) and H. J. Allen (ref. 11) into a trigonometric series and introduce instead of the coordinate x the trigonometric variable ϕ according to

$$x = \frac{l}{2} (1 - \cos \varphi) \tag{17}$$

We shall note here that neglecting u compared to U_{∞} , which leads to this essential simplification for the single profile, is generally no longer permissible for the cascade, since, in the case of narrow spacing or large deflection, the induced velocities u and v become comparable to U_{∞} , due to the mutual interference of the blades.

so that $\phi=0$ denotes the leading edge and $\phi=\pi$ the trailing edge. For the circulation distribution we write

$$\gamma(x) = 2U_{\infty} \left(A_{0} \cot \frac{\varphi}{2} + A_{1} \sin \varphi + A_{2} \sin 2\varphi + \dots \right)$$
 (18)

and, correspondingly, for the source distribution

$$q(x) = 2U_{\infty} \left\{ B_{0} \left(\cot \frac{\varphi}{2} - 2 \sin \varphi \right) + B_{2} \sin 2\varphi + \ldots \right\}$$
 (19)

with A_0 , A_1 , A_2 , . . . and B_0 , B_1 , B_2 , . . . as free coefficients which have to be ascertained from the kinematic flow conditions. In the expression for the source distribution, the first two terms must be combined so that the closed-contour requirement, equation (5), is satisfied term by term.

By evaluating equations (11) and (12) with equations (18) and (19) we obtain for the induced velocities the explicit analytical expressions

$$u_{\gamma E} = \pm U_{\infty} \left[A_{O} \cot \frac{\varphi}{2} + A_{1} \sin \varphi + A_{2} \sin 2\varphi + \dots \right]$$
 (20)

$$v_{\gamma E} = U_{\infty} \left[-A_0 + A_1 \cos \varphi + A_2 \cos 2\varphi + \dots \right]$$
 (21)

$$u_{qE} = U_{\infty} \left[B_0 (1 + 2 \cos \varphi) - B_2 \cos 2\varphi - B_3 \cos 3\varphi - \dots \right]$$
 (22)

$$v_{qE} = \pm U_{\infty} \left[B_0 \left(\cot \frac{\varphi}{2} - 2 \sin \varphi \right) + B_2 \sin 2\varphi + B_3 \sin 3\varphi + \dots \right]$$
 (23)

3.2 Systems of Equations for the Coefficients of

the Singularity Distributions

For a prescribed camber distribution $y_s(x)$ and thickness distribution $y_d(x)$, the coefficients A_0 , A_1 , A_2 , . . . and B_0 , B_2 , B_3 , . . . are to be determined from the kinematic flow

conditions, equations (15) and (16). From these there results, if we introduce $v_{\gamma E}$ according to equation (21), and q(x) according to equation (19) and denote derivatives with respect to x by primes

$$-A_0 + A_1 \cos \varphi + A_2 \cos 2\varphi + \dots = -K + y_s'(x)$$
 (24)

and

$$B_{\mathcal{O}}\left(\cot\frac{\varphi}{2}-2\sin\varphi\right)+B_{\mathcal{O}}\sin2\varphi+\ldots=y_{\mathbf{d}}'(\mathbf{x}) \tag{25}$$

In equation (24)

$$K = \tan \alpha_{\infty} = V_{\infty}/U_{\infty}$$
 (26)

denotes the parameter for the angle of attack of the profile. Since equations (24) and (25) are to be satisfied in the entire profile region $0 \le x \le l$, an infinite number of coefficients is required in the general case. In practical calculations, however, we try to manage with the smallest possible number of coefficients. Then the kinematic flow conditions can be satisfied at only as many discrete points (control points) along the length of the blade chord as terms are taken in equations (18) and (19). Thus the question arises as to the distribution of these control points over the length of the blade chord in order to attain an optimum approximation to the exact solution with the smallest possible number of terms.

For this purpose, the so-called three-quarter chord theorem has been successfully applied in a number of cases (refs. 19 and 20). This theorem states that, if only one control point is selected, it is to be placed at the point $x = \frac{3}{4} l$. For n control points, we divide the entire length of the profile chord into n equal strips each with a chord $l_n = \frac{l}{n}$ and assume the control points at the $\frac{3}{4} l_n$ points. Thus we have one control point at $x_1 = \frac{3}{4} l$, two control points at $x_1 = \frac{3}{8} l$ and $x_2 = \frac{7}{8} l$, three control points at $x_1 = \frac{3}{12} l$, $x_2 = \frac{7}{12} l$, and $x_3 = \frac{11}{12} l$, or generally n control points at

$$x_{\nu}^{(n)} = \frac{4\nu - 1}{4n} i$$
 (27)

with $\nu = 1, 2, \ldots$ n. With use of the three-quarter chord theorem, the kinematic flow conditions, equations (24) and (25), are replaced by the two systems of equations

$$-A_{0} + A_{1} \cos \varphi_{\boldsymbol{\nu}}^{(n)} + A_{2} \cos 2\varphi_{\boldsymbol{\nu}}^{(n)} + \dots + A_{n-1} \cos \left[(n-1)\varphi_{\boldsymbol{\nu}}^{(n)} \right] =$$

$$-K + y_{s}^{t} \left[x_{\boldsymbol{\nu}}^{(n)} \right]$$
(28)

and

$$B_{O}\left[\cot\frac{\varphi_{\nu}^{(n)}}{2} - 2\sin\varphi_{\nu}^{(n)'}\right] + B_{2}\sin2\varphi_{\nu}^{(n)} + \dots B_{n}\sin\left[n\varphi_{\nu}^{(n)}\right] = y_{d}^{'}\left[x_{\nu}^{(n)}\right]$$
(29)

with

$$\cos \varphi_{\nu}^{(n)} = 1 - (4\nu - 1)/2n$$
 (30)

We thus obtain for n control points two systems of n equations each for A_0 , A_1 , . . . A_{n-1} and B_0 , B_2 , . . . B_n . The values of the trigonometric functions at the control points $\phi_{\nu}^{(n)}$ may be calculated universally.

It is expedient, for the evaluation of equation (28), to subdivide the coefficients A_0 , A_1 , . . . into a contribution of the angle of attack (second subscript β) and a portion independent of the angle of attack (second subscript 0). 5 We assume

$$A_{O} = A_{OO} + KA_{O\beta}$$

$$A_{1} = A_{1O} + KA_{1\beta} . . .$$
(31)

⁵For the single airfoil the portion independent of the angle of attack is given by the profile camber; for the cascade it is produced by the induced velocities of the cascade; thus it appears also for symmetrical profiles.

Thereby we obtain, instead of equation (28), the two systems

$$-A_{00} + A_{10} \cos \varphi_{\nu}^{(n)} + A_{20} \cos 2\varphi_{\nu}^{(n)} + \dots + A_{(n-1),0} \cos \left[(n-1)\varphi_{\nu}^{(n)} \right] = y_{s}^{!} \left[x_{\nu}^{(n)} \right]$$
(32)

$$-A_{0\beta} + A_{1\beta} \cos \varphi_{\nu}^{(n)} + A_{2\beta} \cos 2\varphi_{\nu}^{(n)} + \dots + A_{(n-1),\beta} \cos \left[(n-1)\varphi_{\nu}^{(n)} \right] = -1$$
 (33)

The system according to equation (33) has for an arbitrary $n \ge 1$ the solution

$$A_{O\beta} = 1$$
 $A_{1\beta} = A_{2\beta} = ... = 0$

so that equation (31) is simplified to $A_0 = A_{00} + K$, $A_1 = A_{10}$, . . . This means that, for arbitrary thickness and camber distribution, the circulation distribution stemming from the angle-of-attack parameter tan $\alpha_{\infty} = K$ is, as for the flat plate, equal to $2V_{\infty}$ cot $(\phi/2)$.

For a prescribed single profile we must therefore solve the two systems, equations (32) and (29). The solution of equation (32) yields the additional circulation distribution due to the camber; the solution of equation (29), the additional velocities due to the thickness. The explicit systems of equations for one control point as well as for two and three control points are given in table 1.

3.3 Aerodynamic Coefficients

After the coefficients of the singularity distributions have been determined, the aerodynamic coefficients can be obtained from them very simply. In the total circulation only the two first terms of equation (18) make any contribution. From equations (3) and (18) there follows

$$\Gamma = U_{\infty} l \pi \left(A_{O} + \frac{1}{2} A_{1} \right)$$
 (34)

and thus from equation (4) for the total lift of the wing per unit width

$$A = \rho U_{\infty} W_{\infty} l \pi \left(A_{O} + \frac{1}{2} A_{1} \right)$$
 (35)

For the lift coefficient c_{A} defined by

$$c_{A} = A / \frac{\rho}{2} W_{\infty}^{2}$$
 (35a)

there results, consequently

$$c_{A} = 2\pi \left(A_{O} + \frac{1}{2} A_{1} \right) \cos \alpha_{\infty}$$

$$= 2\pi \left[\left(A_{OO} + \frac{1}{2} A_{1O} \right) \cos \alpha_{\infty} + \sin \alpha_{\infty} \right]$$
(36)

and

$$\left(dc_{A} / d\alpha_{\infty} \right)_{\alpha_{\infty} = 0} = 2\pi$$
 (36a)

This value is exactly correct for the flat plate.

The velocity distribution $W_K(x)$ along the contour is obtained from the velocity distribution $U_S(x)$ along the chord line by means of the relationship indicated by F. Riegels (ref. 10)

$$W_{K}/U_{\infty} = (U_{s}/U_{\infty})\left(1/\sqrt{1+y_{d}^{2}}\right)$$
 (37)

Here $1/\sqrt{1+y_d^{'2}}$ is the so-called Riegels factor known from the thickness distribution. The velocity distribution on the chord follows from

$$U_s = U_{\infty} + u_{qE} + u_{\gamma E}$$

or, after substitution of equations (20), (22), and (31) from

$$\frac{U_{s}}{U_{\infty}} = \left[1 + B_{0}(1 + 2\cos\varphi) - B_{2}\cos2\varphi - B_{3}\cos3\varphi - \dots\right] \pm \frac{U_{s}}{U_{\infty}}$$

$$\left(A_{00} \cot \frac{\varphi}{2} + A_{10} \sin \varphi + A_{20} \sin 2\varphi + \ldots\right) \pm K \cot \frac{\varphi}{2} \qquad (38)$$

with the upper and lower signs for the suction and pressure sides, respectively. $W_K(x)$ may be conveniently determined from equations (37) and (38), after the coefficients of the singularity distributions have been ascertained. In equation (38), the first term, in brackets, gives the velocity distribution of the symmetrical profile for symmetrical approach flow; the second term, in parentheses, gives the contribution of the camber for zero angle of attack, and the third term gives the contribution of the incidence of the profile with the angle α_{∞} = arc tan K. This third term is the same as in the case of the flat plate with incidence.

At the profile nose (x = 0, φ = 0) generally $U_s = \infty$ and thus for the infinitely thin profile also, $W_K = \infty$. The pressure then has in the neighborhood of the nose very large negative values (minimum-pressure peak). The profile nose is in a flow either from below or from above. The infinitely large velocity does not appear, however, if in equation (38) the terms with $\cot(\varphi/2)$ vanish, that is, for

$$A_{O} = O ag{38a}$$

In this case there is no flow about the leading edge; that is, shock-free inflow occurs. At an angle of attack in the case of shock-free inflow, which plays a role in the older literature on turbo-machines, the front stagnation point, for an infinitely thin profile, lies exactly on the leading edge. From equation (38a) there results for the angle of attack pertaining to shock-free inflow (denoted by subscript st)

$$A_{O} = A_{OO} + K_{st} = A_{OO} + \tan \alpha_{\infty st} = 0$$

$$\tan \alpha_{\infty st} = -A_{OO}$$
(38b)

For profiles of finite thickness, the velocity at the nose remains finite. Equation (37) yields for W_K/U_∞ at x=0 the limiting value ∞/∞ which, with R_N as the nose radius, is calculated to be

$$(W_{K}/U_{\infty})_{X=0} = A_{O}\sqrt{2l/R_{N}}$$
 (38c)

(Compare ref. 3.) The concept of shock-free inflow according to equation (38a) is retained also for profiles of finite thickness since, with such profiles, for $\alpha_{\infty} \neq \alpha_{\infty st}$ a large local minimum pressure point appears also in the neighborhood of the nose.

A comparison of the aerodynamic coefficients calculated according to this approximation method with exact solutions follows later in section 3.5.

3.4 Checking of the Profile Shape

Since in the approximate method the prescribed profile is approximated at only a few control points by the tangents of the mean camber line and the thickness distribution, it is expedient to check whether it is represented with sufficient accuracy. This is possible by comparison of the prescribed mean camber line and thickness distribution with the corresponding values of the approximation polynomial. The formulas required for this will be given here.

For the mean camber line, the approximate calculation yields, by integration of equation (24) with $V_{\infty}=0.6$

$$\frac{y_s}{l} = \frac{1}{8} A_1 (1 - \cos 2\phi) + \frac{1}{12} A_2 (\cos \phi - \cos 3\phi) -$$

$$\frac{1}{16} A_3(1 - 2 \cos 2\varphi + \cos 4\varphi) + \dots$$
 (39)

The thickness distribution follows likewise by integration from equation (27)

 $^{^{6}}$ For $V_{\infty} \neq 0$ we obtain merely an additional inclination of the mean camber line (angle of incidence) which is unimportant here.

$$\frac{y_{d}}{l} = \frac{1}{2} B_{0} \left(\sin \varphi + \frac{1}{2} \sin 2\varphi \right) + \frac{1}{12} B_{2} (3 \sin \varphi - \sin 3\varphi) + \frac{1}{16} B_{3} (2 \sin 2\varphi - \sin 4\varphi) + \dots$$
(40)

The numerical evaluation of equations (39) and (40) is discussed in section 3.5.

3.5 Examples

Before transferring the approximate method to the cascade, we shall examine its usefulness for the single profile with the aid of a few examples for which exact solutions are known.

3.5.1 The flat plate. We assume the flat plate to have an angle of attack α_{∞} . Since the camber is zero and therefore $y_s \equiv 0$, there results from equation (32), independently of the number of control points selected

$$A_{OO} = A_{1O} = A_{2O} = ... = 0$$

According to equation (29) we have also

$$B_0 = B_2 = B_3 = \dots = 0$$

Thus there follows, in complete agreement with the exact solution, from equation (36) for the lift coefficient

$$c_A = 2\pi \sin \alpha_{\infty}$$

and from equation (18), because of $A_O = K = V_{\infty}/U_{\infty}$ and $A_1 = A_2 = \cdots = 0$, for the circulation distribution

$$\gamma(x) = 2V_{\infty} \cot \frac{\Phi}{2}$$

3.5.2 <u>Parabolic profile</u>. For a parabolic profile with the camber f, the chord of which coincides with the x-axis, there applies

$$y_s(x) = 4f \frac{x}{l} \left(1 - \frac{x}{l}\right)$$

We assume the direction of the approach flow to be parallel to the chord $(\alpha_{\infty}=0)$, that is, K=0), and one control point to be chosen at $x_1=\frac{3}{4}$. From the fulfillment of the kinematic flow conditions (equation (34)) at this control point, we obtain the coefficient A_1 whereas we have to assume

$$A_{00} = A_{20} = A_{30} = \dots = 0$$

For A₁₀ we obtain, because of

$$\cos \varphi_1^{(1)} = -\frac{1}{2}$$
 and $(y_s^i)_{x=3l/4} = -2f/l$

the values

$$-\frac{1}{2}A_{10} = -2f/l$$
 or $A_{10} = 4f/l$

respectively. According to equation (31), $B_0 = B_2 = B_3 = \dots = 0$. Thus there results, according to equation (36), for the lift coefficient

$$c_A = 4\pi f/l$$

and, according to equation (20), for the circulation distribution

$$\gamma(x) = 8(f/l)U_{\infty} \sin \varphi$$

Both expressions agree completely with the solution of W. Birnbaum for the parabolic profile in the case of shock-free inflow (zero angle of attack). If we calculate with several control points, we arrive at the same result, as may be easily confirmed.

3.5.3 Symmetrical Joukowsky profile.- Within the scope of the approximate calculation, the symmetrical Joukowsky profile is the simplest case of a profile of finite thickness, since it is represented

by the first term in equation (19). A Joukowsky profile of the thickness d has, for a moderate thickness ratio d/l, the thickness distribution

$$y_d(x) = \frac{8}{3\sqrt{3}} d\sqrt{\frac{x}{l}} \left(1 - \frac{x}{l}\right)^{3/2}$$
 (41)

The greatest thickness lies at $x = \frac{1}{4}$. For the calculation with one control point we need y_d for $x = \frac{3}{4}l$. From equation (41) there follows

$$(y_d^i)_{x=3l/4} = -8d/9l$$

and thus from equation (29) as the qualifying equation for B_0

$$-\left(2/\sqrt{3}\right)B_0 = -8d/9i$$

or

$$B_0 = (4/3\sqrt{3})(d/1)$$
 $B_2 = B_3 = ... = 0$

The approximate calculation with one control point yields, therefore, according to equations (40) and (17), for the contour

$$y_{d}(x) = \frac{2}{3\sqrt{3}} d\left(\sin \varphi + \frac{1}{2}\sin 2\varphi\right)$$
$$= \frac{8}{3\sqrt{3}} d\sqrt{\frac{x}{2}} \left(1 - \frac{x}{2}\right)^{3/2}$$

in complete agreement with equation (41). The calculation with several control points leads to the same result.

In the further examples, for single profiles as well as, later on, for the cascade, we shall select three control points since this number yields for the cascade results with fully sufficient accuracy so that the considerably larger calculation expenditure for a higher number of control points is not worth while.

3.5.4 NACA 0010 profile. As another single profile we shall treat a symmetrical profile of the old NACA system which will later be used in the cascade also. The NACA 0010 profile has the thickness distribution

$$\frac{y_{d}}{l} = 0.1485\sqrt{\frac{x}{l}} - 0.0630\frac{x}{l} - 0.1758\left(\frac{x}{l}\right)^{2} + 0.1422\left(\frac{x}{l}\right)^{3} - 0.0508\left(\frac{x}{l}\right)^{4}$$
 (42)

with

$$y_d = 0.07423 \sqrt{\frac{l}{x}} - 0.0630 - 0.3516 \frac{x}{l} + 0.4265 \left(\frac{x}{l}\right)^2 - 0.203 \left(\frac{x}{l}\right)^3$$
 (43)

Tables 2 and 3 contain, among others, the values of y_d/l according to equation (42), of y_d at the three control points as well as the factor $\sqrt{1+y_d^{12}}$ which is required for the calculation of the velocity distribution according to equation (37). The solution of the system of equations for B_0 , B_2 , B_3 with these values of y_{d1} , y_{d2} , y_{d3} yields the numerical values in table 4. Because of $y_s \equiv 0$, the coefficients A_{00} , A_{10} , A_{20} are all equal to zero. With these values we can, first, check the profile contour according to equation (40). The approximate calculation agrees satisfactorily with the prescribed contour (fig. 4). For the velocity distribution in symmetrical approach flow, calculated according to equations (37) and (38) with K=0, figure 4 likewise shows good agreement with the exact solution. Only in the neighborhood of the trailing edge do somewhat larger deviations appear which are, however, to be expected because of the differences in the contours.

3.5.5 NACA 8410 profile. Finally we shall calculate a cambered profile of finite thickness which will also be used in the cascade later on. The NACA 8410 profile, with the coordinates according to

⁷Systematics of the National Advisory Committee for Aeronautics. Regarding the old NACA systematics, compare Jacobs, E. N., Ward, K. E., and Pinkerton, R. M.: The Characteristics of 78 Related Airfoil Sections From Tests in the Variable-Density Wind Tunnel. NACA TR 460, 1933.

tables 2 and 3,8 has a relative thickness $\frac{d}{l}$ = 0.1 and a relative camber $\frac{f}{l}$ = 0.08. Table 4 contains the coefficients for the singularity distributions. Figure 5 shows the result of the check of the profile contour. The agreement with the prescribed variation is satisfactory here, too. Figure 6 contains the velocity distribution for different angles of attack. The angle of attack $\alpha_{\infty 0}$ of zero lift is $\alpha_{\infty 0} = -7.3^{\circ}$; the shock-free inflow corresponds to $\alpha_{\infty st} = 2.0^{\circ}$. For larger angles of attack, a pronounced minimum-pressure peak appears in the neighborhood of the nose on the suction side.

4. PERFORMANCE OF THE CALCULATION FOR THE CASCADE

4.1 The Kinematic Flow Conditions

We shall now transfer to the cascade the three-quarter chord theorem whose applicability for the single profile was proved with the aid of the preceding examples. In contrast to the single blade, there exist, for the cascade, generally larger angles between the direction of the approach flow and the blade chord, and the deflection caused by the cascade, that is, the difference in direction between W_1 and W_2 , can no longer be regarded as a small angle. Figures 7(a) and 7(b) show the velocity diagram of a staggered cascade. The translational velocity W_{∞} has, just as in the case of the single airfoil, the components U_{∞} parallel and V_{∞} perpendicular to the blade chord; however V_{∞} now is not always small compared to U_{∞} . The quantity W_{∞} denotes the translational velocity of the cascade, free from circulation (free from deflection). For the cascade with deflection (with circulation) the cascade induces an additional velocity parallel to the cascade front ±Aw which, far ahead of and far behind the cascade, has the same magnitude but opposite signs. The inflow velocity W1 far ahead of the cascade is the resultant of W_{∞} and $+\Delta w$; the outflow velocity W_{2} is the resultant of W_m and $-\Delta w$. Between the circulation Γ of a blade and the induced velocity Δw there exists the relationship immediately following from figures 7(a) and 7(b)

$$\Delta w = \Gamma/2t \tag{44}$$

⁸We want to point out that the thickness distribution of the NACA 8410 profile given in table 2 slightly deviates from that according to footnote 7.

Since, for the cascade, the induced velocities u and v generally must not be neglected compared to U_{∞} , as they are for the single airfoil, we have now to use the complete kinematic flow conditions according to equations (6) and (7). For the further calculation, we shall write the latter in the form

$$\frac{V_{\infty}}{U_{\infty}} + \frac{v}{U_{\infty}} = y_{S}' \left(1 + \frac{u}{U_{\infty}} \right)$$
 (45)

and

$$\frac{1}{2} \frac{\mathbf{q}(\mathbf{x})}{\mathbf{U}_{\infty}} = \mathbf{y}_{\mathbf{d}}^{\prime} \left(1 + \frac{\mathbf{u}}{\mathbf{U}_{\infty}} \right) \tag{46}$$

These conditions, with the values of u and v, will be satisfied on the chord also for the cascade.

4.2 The Induced Velocities

In order to be able to evaluate the kinematic flow conditions according to equations (45) and (46) for the determination of the singularity distributions, we must first obtain the induced velocities u and v on the blade chord for the cascade just as before, for the single airfoil. The general formula for these induced velocities of the cascade was furnished by equation (14); however, the integral contained in it cannot be solved analytically for the general case of the staggered cascade ($\lambda \neq 0$). Thus we are dependent on numerical methods for the evaluation of this integral. In these methods the singularity of the integrand of equation (14) is again troublesome for x' = x which, however, stems only from the contribution of the single airfoil. Since, for the single airfoil, all components of the induced velocity could be evaluated analytically for the singularity distributions on the basis of the series according to H. Glauert (compare section 3.1), it is possible to eliminate the singularity of the integrand by subtracting the induced velocity field of the single airfoil from that of the cascade. Therefore

$$w = w_E + w_G \tag{47}$$

The subscript G denotes the "remainder of the cascade," that is, the contribution of "all remaining" blades without the single blade considered. The explicit expression for $w_{\rm G}$ follows from equations (9) and (14) by taking the difference, after introducing, in addition, the dimensionless x-coordinates

$$\xi = x/l \qquad \xi' = x'/l \tag{48}$$

we obtain

$$w_G(\xi) = u_G - iv_G$$

$$= \frac{1}{2} \frac{l}{t} \int_{\xi'=0}^{1} \left[q(\xi') + i\gamma(\xi') \right] \left[e^{i\lambda} \coth \left(\pi \frac{\xi - \xi'}{t/l} e^{i\lambda} \right) - \frac{1}{\pi} \frac{t/l}{\xi - \xi'} \right] d\xi'$$
(49)

This induced velocity field of the remainder of the cascade can be conveniently evaluated numerically since the influence function

$$F(\xi - \xi') = e^{i\lambda} \coth\left(\pi \frac{\xi - \xi'}{t/l} e^{i\lambda}\right) - \frac{1}{\pi} \frac{t/l}{\xi - \xi'}$$
 (50)

is regular for $\xi' = \xi$ (on the further calculation of equation (49) compare the following section 4.3 and later section 7.1).

4.3 Expansion in Series

Corresponding to equation (47), the two components u and v of the induced complex velocity w = u - iv also are split up into the contribution of the single airfoil and that of the remainder of the cascade

$$u = u_E + u_C$$
 $v = v_E + v_C$ (51)

We divide these parts again, as before for the single airfoil according to equation (10), into the contributions of the circulation distribution (subscript γ) and of the source distribution (subscript q)

$$u_{E} = u_{\gamma E} + u_{qE} \qquad u_{G} = u_{\gamma G} + u_{qG}$$

$$v_{E} = v_{\gamma E} + v_{qE} \qquad v_{G} = v_{\gamma G} + v_{qG}$$
(52)

The four components of the single airfoil $u_{\gamma E}$, u_{qE} , $v_{\gamma E}$, and v_{qE} are given in integral form by equations (11) and (12) and as explicit formulas by equations (20) to (23), respectively.

Similarly we obtain for the four components $u_{\gamma G}$, u_{qG} , $v_{\gamma G}$, and v_{qG} of the remainder of the cascade from equation (49), by splitting, the integral representations

$$u_{\gamma G} = -\frac{1}{2} \frac{l}{t} \int_{\xi'=0}^{1} \gamma(\xi') J(F) d\xi' \qquad (53)$$

$$v_{\gamma G} = -\frac{1}{2} \frac{1}{t} \int_{\xi'=0}^{1} \gamma(\xi') R(F) d\xi' \qquad (54)$$

$$u_{qG} = \frac{1}{2} \frac{1}{t} \int_{\xi'=0}^{1} q(\xi') R(F) d\xi'$$
 (55)

$$v_{qG} = -\frac{1}{2} \frac{1}{t} \int_{\xi'=0}^{1} q(\xi') J(F) d\xi'$$
 (56)

with R(F) and J(F) as real and imaginary parts, respectively, of the function $F(\xi - \xi')$ according to equation (50). If we introduce, furthermore, into equations (53) to (56) for $\gamma(x)$ and q(x) the Glauert series according to equations (18) and (19), we obtain, in analogy to equations (20) to (23)

$$u_{\gamma G} = U_{\infty} (A_{O}g_{\gamma O} + A_{1}g_{\gamma 1} + A_{2}g_{\gamma 2} + ...)$$
 (57)

$$v_{\gamma G} = U_{\infty} (A_{O} f_{\gamma O} + A_{1} f_{\gamma 1} + A_{2} f_{\gamma 2} + ...)$$
 (58)

$$u_{qG} = U_{\infty} (B_0 g_{q0} + B_2 g_{q2} + B_3 g_{q3} + \cdots)$$
 (59)

$$v_{qG} = U_{\infty} (B_0 f_{q0} + B_2 f_{q2} + B_3 f_{q3} + ...)$$
 (60)

In equations (57) to (60), the quantities $g_{\gamma 0}$, $g_{\gamma 1}$, ... and g_{q0} , g_{q2} , ... denote the dimensionless induced velocities in the x-direction caused by the vortex distribution (subscript γ) and the source distribution (subscript q), respectively. The same applies for the quantities $f_{\gamma 0}$, $f_{\gamma 1}$, ... and f_{q0} , f_{q2} , ... regarding the y-direction. All these quantities are functions of x/l, t/l, and λ . In the limiting process toward the single airfoil $(t/l \to \infty)$ all these functions tend toward zero; they have been universally calculated

in dependence on the three parameters x/l, t/l, and λ . (Compare later section 7.1 and the appendix "Cascade-Downwash Tables".) This signifies an important advantage for the application of the calculation method as will be shown later.

Since the kinematic flow conditions, equations (45) and (46), are satisfied on the blade chord for the calculation method with the values of u and v, the two components of which $u_{\gamma E}$ and v_{qE} have, according to equations (11) and (12), opposite and equal values on both sides of the chord, these two components are on the average, equal to zero on the chord. Thus the values of u and v to be substituted into equations (45) and (46) become, according to equations (51) and (52)

$$u = u_{qE} + u_{qG} + u_{\gamma G}$$
 (61)

$$v = v_{\gamma E} + v_{\gamma G} + v_{qG}$$
 (62)

If we substitute into equations (61) and (62) the values according to equations (57) to (60) and according to equations (21) and (22), we obtain, if we limit ourselves to three series terms, the expressions

$$u = U_{\infty} \left[\left(A_{0} g_{\gamma 0} + A_{1} g_{\gamma 1} + A_{2} g_{\gamma 2} \right) + \left(B_{0} g_{q 0}^{*} + B_{2} g_{q 2}^{*} + B_{3} g_{q 3}^{*} \right) \right]$$

$$v = U_{\infty} \left[\left(A_{0} f_{\gamma 0}^{*} + A_{1} f_{\gamma 1}^{*} + A_{2} f_{\gamma 2}^{*} + A_{3} f_{\gamma 3}^{*} \right) + \left(B_{0} f_{q 0} + B_{2} f_{q 2} + B_{3} f_{q 3} \right) \right]$$

$$(64)$$

which are also valid for the kinematic flow conditions only, with the abbreviations

$$g_{q0}^{*} = g_{q0} + 2 \cos \varphi + 1 \qquad f_{\gamma 0}^{*} = f_{\gamma 0} - 1$$

$$g_{q2}^{*} = g_{q2} - \cos 2\varphi \qquad f_{\gamma 1}^{*} = f_{\gamma 1} + \cos \varphi$$

$$g_{q3}^{*} = g_{q3} - \cos 3\varphi \qquad f_{\gamma 2}^{*} = f_{\gamma 2} + \cos 2\varphi$$

$$f_{\gamma 3}^{*} = f_{\gamma 3} + \cos 3\varphi$$

$$f_{\gamma 3}^{*} = f_{\gamma 3} + \cos 3\varphi$$
(65)

This is not valid for determining the velocity distribution on the contour. For this, only u is needed. The different signs of up indicate the velocity difference at the opposite points of the suction and pressure side.

which represent the total dimensionless induced velocities for the remainder of the cascade plus the single blade. Thereby the induced velocities are furnished to the extent that the coefficients of the circulation and the source distribution can be determined from the kinematic flow conditions.

4.4 Systems of Equations for the Coefficients of the

Singularity Distributions

The coefficients A_0 , A_1 , ... and B_0 , B_2 , ... according to equations (18) and (19) are determined for the cascade from the kinematic flow conditions in the same manner as for the single profile. For the cascade, however, we shall take as a basis the complete kinematic flow conditions according to equations (45) and (46). For the location of the control points we shall also use the three-quarter chord theorem as we did in the case of the single airfoil. This implies a hypothesis, the justification of which we shall check later on a few examples for which exact solutions exist.

If we satisfy the two kinematic flow conditions at n control points, we obtain 2n linear equations for the 2n unknowns A_0 , A_1 , ... A_{n-1} and B_0 , B_2 , ... B_n . In the case of the single airfoil this system was transformed into two systems of n equations each: into one system for A_0 , A_1 , ... A_{n-1} , and a second for B_0 , B_2 , ... B_n . Both systems could be solved independently of one another. In the case of the cascade there results generally a system of 2n equations which only in a few special cases has to be transformed into two systems of n equations each.

By substituting equations (63) and (64) into equations (45) and (46) and satisfying the two equations thus formed at the n control points at the points corresponding to $\phi_{\nu}^{(n)}$ (with $\nu = 1, 2, \ldots, n$), we obtain with $y'_{d\nu} = y'_{d} \begin{bmatrix} x'_{\nu} \end{bmatrix}$ and $y'_{s\nu} = y'_{s} \begin{bmatrix} x'_{\nu} \end{bmatrix}$ the system of equations

$$B_{0}\left\{\left[\cot\frac{\varphi_{\nu}^{(n)}}{2}-2\sin\varphi_{\nu}^{(n)}\right]-y_{d\nu}^{'}g_{q0}^{*}\right\}+B_{2}\left[\sin2\varphi_{\nu}^{(n)}-y_{d\nu}^{'}g_{q2}^{*}\right]+B_{3}\left[\sin3\varphi_{\nu}^{(n)}-y_{d\nu}^{'}g_{q3}^{*}\right]$$

$$=y_{d\nu}^{'}\left[1+A_{0}g_{\gamma 0}+A_{1}g_{\gamma 1}+A_{2}g_{\gamma 2}\right]$$

$$A_{0}\left[f_{\gamma 0}^{*}-y_{s}^{'}\nu g_{\gamma 0}\right]+A_{1}\left[f_{\gamma 1}^{*}-y_{s}^{'}\nu g_{\gamma 1}\right]+A_{2}\left[f_{\gamma 2}^{*}-y_{s}^{'}\nu g_{\gamma 2}\right]$$

$$=-K+y_{s\nu}^{'}\left[1+B_{0}g_{q0}^{*}+B_{2}g_{q2}^{*}+B_{3}g_{q3}^{*}\right]-\left[B_{0}f_{q0}+B_{2}f_{q2}+B_{3}f_{q3}\right]$$
(66)

The quantities $y_{d\nu}^{\prime}$ and $y_{s\nu}^{\prime}$ are given with the geometry of the profile. The functions $f_{\gamma 0}$, $f_{\gamma 1}$, . . . and $g_{\gamma 0}$, $g_{\gamma 1}$, . . . can be taken from the cascade-downwash tables (in the appendix); in addition to depending on t/l and λ , they depend on the position of the control point, thus on ν . The quantity $K = \frac{V_{\infty}}{U_{\infty}} = \tan \alpha_{\infty}$ determines the direction of the inflow and is to be interpreted as a free parameter.

The system (eq. (66)), is arranged in such a manner that the terms with A_0 , A_1 , . . . and B_0 , B_2 , . . . on the right side are, in general, small compared to the remaining terms and may be neglected for an approximate solution.

For the further treatment of the system according to equation (66) we shall take the case of three control points, thus n=3, as a basis, since this case has proved to be particularly suitable for the cascade calculations and the downwash tables were therefore made accordingly. With n=3, equation (66) is a system of six equations for A_0 , A_1 , A_2 , B_0 , B_2 , B_3 . With the abbreviations

$$q_{0\nu} = \cot \frac{\varphi_{\nu}^{(3)}}{2} - 2 \sin \varphi_{\nu}^{(3)}$$

$$q_{2\nu} = \sin 2\varphi_{\nu}^{(3)}$$

$$q_{3\nu} = \sin 3\varphi_{\nu}^{(3)}$$
(67)10

$$q_{0\nu} - y_{d\nu}^{\dagger} g_{q0}^{*} = Q_{0\nu} \qquad f_{\gamma 0}^{*} - y_{s\nu}^{\dagger} g_{\gamma 0} = P_{0\nu}
q_{2\nu} - y_{d\nu}^{\dagger} g_{q2}^{*} = Q_{2\nu} \qquad f_{\gamma 1}^{*} - y_{s\nu}^{\dagger} g_{\gamma 1} = P_{1\nu}
q_{3\nu} - y_{d\nu}^{\dagger} g_{q3}^{*} = Q_{3\nu} \qquad f_{\gamma 2}^{*} - y_{s\nu}^{\dagger} g_{\gamma 2} = P_{2\nu}$$
(68)

$$y'_{d\nu}g_{\gamma 0} = S_{0\nu} \qquad f_{q0} - y'_{s\nu}g_{q0}^{*} = R_{0\nu}$$

$$y'_{d\nu}g_{\gamma 1} = S_{1\nu} \qquad f_{q2} - y'_{s\nu}g_{q2}^{*} = R_{2\nu}$$

$$y'_{d\nu}g_{\gamma 2} = S_{2\nu} \qquad f_{q3} - y'_{s\nu}g_{q3}^{*} = R_{3\nu}$$
(69)

and with ν = 1 to 3, equation (66) obtains the simpler form

$$\begin{array}{l}
B_{O}Q_{O\nu} + B_{2}Q_{2\nu} + B_{3}Q_{3\nu} = y_{d\nu}^{\dagger} + A_{O}S_{O\nu} + A_{1}S_{1\nu} + A_{2}S_{2\nu} \\
A_{O}P_{O\nu} + A_{1}P_{1\nu} + A_{2}P_{2\nu} = -K + y_{s\nu}^{\dagger} - \left(B_{O}R_{O\nu} + B_{2}R_{2\nu} + B_{3}R_{3\nu}\right)
\end{array} (70)$$

log n = 3 we obtain the following numerical values (compare table 1): $q_{01} = 0 \qquad q_{21} = 0.8660 \qquad q_{31} = 0$ $q_{02} = -1.1269 \qquad q_{22} = -0.3287 \qquad q_{32} = -0.8765$ $q_{03} = -0.8040 \qquad q_{23} = -0.9213 \qquad q_{33} = 0.9827$

By profile geometry (y's, y'd) and cascade geometry (t/l, λ) all coefficients of the system according to equation (70) are fixed. The coefficients A_0 to B_3 have then to be ascertained as functions of $K = \tan \alpha_{\infty}$ (inflow direction). We can see from equation (70) that all coefficients are linear functions of K. In order to eliminate the repeated solving of equation (70), corresponding to the number of different desired inflow directions, it is suitable to introduce this linear dependence (as for the single blade in equation (31)) according to

$$A_{0} = A_{00} + KA_{0\beta} \qquad B_{0} = B_{00} + KB_{0\beta}$$

$$A_{1} = A_{10} + KA_{1\beta} \qquad B_{2} = B_{20} + KB_{2\beta}$$

$$A_{2} = A_{20} + KA_{2\beta} \qquad B_{3} = B_{30} + KB_{3\beta}$$
(71)

and to split the equations into components free from K and involving K. We thus obtain two systems of six equations each with ν = 1 to 3. The first system for the six coefficients A_{00} to B_{30} describes the translational flow parallel to the chord (K = 0, α_{∞} = 0) and reads

$$\begin{array}{lll}
A_{00}P_{0\nu} + A_{10}P_{1\nu} + A_{20}P_{2\nu} &= y'_{s\nu} - \left(B_{00}R_{0\nu} + B_{20}R_{2\nu} + B_{30}R_{3\nu}\right) \\
B_{00}Q_{0\nu} + B_{20}Q_{2\nu} + B_{30}Q_{3\nu} &= y'_{d\nu} + \left(A_{00}S_{0\nu} + A_{10}S_{1\nu} + A_{20}S_{2\nu}\right)
\end{array} (72)$$

The second system yields $A_{O\beta}$ to $B_{3\beta}$ as variations of A_O to B_3 for changed inflow direction and has the form

$$A_{0\beta}P_{0\nu} + A_{1\beta}P_{1\nu} + A_{2\beta}P_{2\nu} = -1 - \left(B_{0\beta}R_{0\nu} + B_{2\beta}R_{2\nu} + B_{3\beta}R_{3\nu}\right) \\
 B_{0\beta}Q_{0\nu} + B_{2\beta}Q_{2\nu} + B_{3\beta}Q_{3\nu} = A_{0\beta}S_{0\nu} + A_{1\beta}S_{1\nu} + A_{2\beta}S_{2\nu}$$
(73)

In the general case for staggered cascades with cambered profiles of finite thickness, we have two systems of six linear equations each, with six unknowns. In a few special cases considerable simplifications are possible for the solution of the systems of equations which we shall briefly enumerate below.

4.4.1 Cascades with infinitely thin blades and arbitrary stagger. Because of $y_{dv}^{\dagger} = 0$ for infinitely thin blades, we obtain $S_{Ov} = S_{1v} = S_{2v} = 0$ and thus also

$$B_{OO} = B_{2O} = B_{3O} = 0$$
 $B_{OB} = B_{2B} = B_{3B} = 0$

Equations (72) and (73) are reduced to

$$A_{00}P_{0\nu} + A_{10}P_{1\nu} + A_{20}P_{2\nu} = y_{s\nu}^{\dagger}$$

$$A_{0\beta}P_{0\nu} + A_{1\beta}P_{1\nu} + A_{2\beta}P_{2\nu} = -1$$

thus, to two systems of three equations each.

4.4.2 <u>Unstaggered cascade with blades of arbitrary camber and thickness</u>. Because of $\lambda = 0$ for unstaggered cascades there applies (compare later section 7.1)

$$g_{\gamma 0} = g_{\gamma 1} = g_{\gamma 2} = f_{q0} = f_{q2} = f_{q3} = 0$$

Thereby we obtain $B_{0\beta} = B_{2\beta} = B_{3\beta} = 0$, and equations (70) and (71) are reduced to

$$B_{00}Q_{0\nu} + B_{20}Q_{2\nu} + B_{30}Q_{3\nu} = y_{d\nu}^{t}$$

$$A_{00}P_{0\nu} + A_{10}P_{1\nu} + A_{20}P_{2\nu} = y_{s\nu}^{t} - (B_{00}R_{0\nu} + B_{20}R_{2\nu} + B_{30}R_{3\nu})$$

$$A_{0\beta}P_{0\nu} + A_{1\beta}P_{1\nu} + A_{2\beta}P_{2\nu} = -1$$

$$(74)$$

thus, to three systems of three equations each.

4.4.3 Single profile. Because of $t/l = \infty$ for the single profile

$$g_{\gamma 0} = g_{\gamma 1} = g_{\gamma 2} = f_{q0} = f_{q2} = f_{q3} = 0$$

is valid.

Thus, according to equation (69), $S_{0\nu} = S_{1\nu} = S_{2\nu} = 0$ and consequently $B_{0\beta} = B_{2\beta} = B_{3\beta} = 0$. Furthermore, we obtain, according to equations (68) and (65)

$$P_{0\nu} = -1$$
 $P_{1\nu} = \cos \varphi_{\nu}^{(3)}$ $P_{2\nu} = \cos 2\varphi_{\nu}^{(3)}$

Accordingly, equations (70) and (71) are again reduced to equation (74); now, however, with P_{Ol} to P_{23} as fixed numbers. With these, the solution of the last system of equation (74) reads

$$A_{O\beta} = 1$$
 $A_{1\beta} = 0$ $A_{2\beta} = 0$

For the single profile, we have therefore to solve the first two systems of equation (74) with three equations each. The latter do not agree exactly with equations (29) and (32) for the single profile. The reason is that there the calculation was on the basis of the simplified kinematic flow conditions, equations (15) and (16); here, on the other hand we use the complete kinematic flow conditions, equations (7) and (8). In the numerical evaluation, however, the difference for the single profile is very small.

4.4.4 General case. In the general case of the staggered cascade with cambered profile of finite thickness, where two systems of six equations each are to be solved, it proves to be expedient to choose a method of successive approximation. Equation (72) as well as equation (73) is split up into two systems of three equations each. (Compare for more details later, section 7.2.)¹²

4.5 Aerodynamic Coefficients

Below, the formulas are furnished according to which the aerodynamic coefficients of the cascade can be determined from the coefficients of the singularity distributions.

4.5.1 <u>Lift.- Equation (4)</u> for the resultant force on a single blade applies also for the blade in the cascade configuration if we understand W_{∞} to be the vertical mean of W_1 and W_2 according to figure 7(a).

The numerical values are (compare table 1):

$$P_{01} = -1$$
 $P_{11} = 0.5$
 $P_{21} = -0.5$
 $P_{02} = -1$
 $P_{12} = -0.1667$
 $P_{22} = -0.9444$
 $P_{03} = -1$
 $P_{13} = -0.8333$
 $P_{23} = 0.3889$

¹²This method corresponds approximately to the one for the single profile with the simplified kinematic flow conditions.

A is perpendicular to the direction of W_{∞} . If we insert Γ from equation (44) into equation (4), there follows

$$A = 2pW_{\infty} t \Delta w \tag{75}$$

or

$$c_{A} = A/\frac{\rho}{2} W_{\infty}^{2} l = 4(\Delta w/W_{\infty})(t/l)$$
 (76)

From equation (4) we obtain with Γ according to equation (34) and with A_0 and A_1 according to equation (71)

$$c_{A} = 2\pi \left(A_{O} + \frac{1}{2} A_{1} \right) \cos \alpha_{\infty}$$

$$= 2\pi \left[\left(A_{OO} + \frac{1}{2} A_{1O} \right) \cos \alpha_{\infty} + \left(A_{O\beta} + \frac{1}{2} A_{1\beta} \right) \sin \alpha_{\infty} \right]$$
 (77)

Hence there results for the lift increase of the blade in the cascade for α_{∞} = 0 the expression

$$\left(\frac{\mathrm{dc}_{A}}{\mathrm{d\alpha}_{\infty}}\right)_{\alpha_{\infty}=0} = 2\pi \left(A_{O\beta} + \frac{1}{2}A_{1\beta}\right) \tag{78}$$

4.5.2 <u>Inflow and outflow angles.</u> - According to the velocity diagram in figure 7(a) there applies for the components $W_{\infty t}$ and $W_{\infty n}$ of W_{∞} parallel (subscript t) or, respectively, perpendicular (subscript n) to the cascade front

$$W_{\infty t} = U_{\infty} \sin \lambda + V_{\infty} \cos \lambda$$

$$W_{\infty n} = W_{1n} = W_{2n} = U_{\infty} \cos \lambda - V_{\infty} \sin \lambda$$
(79)

Furthermore, we have according to figure 7(a) (with $W_n = W_{\infty n} = W_{ln} = W_{2n}$ for abbreviation)

$$\cot \beta_1 - \cot \beta_2 = \frac{2 \Delta w}{W_n} \qquad \sin \beta_\infty = \frac{W_n}{W_\infty}$$

and thus

$$(\cot \beta_1 - \cot \beta_2) \sin \beta_\infty = 2 \Delta w/W_\infty$$
 (80)

or, respectively, according to equation (76)

$$c_{A} = 2 \frac{t}{l} \sin \beta_{\infty} \left(\cot \beta_{1} - \cot \beta_{2} \right)$$
 (81)

This is the relationship between the lift coefficient and the flow angles, which is fundamental for the cascade theory.

In addition to the angles β_1 , β_2 , and β_∞ between W_1 , W_2 , and W_∞ , respectively, and the cascade front, we shall introduce the angles α_1 , α_2 , and α_∞ between these velocities and the blade chord. According to figure 7(a) there applies, because of $\beta_S = (\pi/2) + \lambda$

$$\lambda + \alpha_{1} = \beta_{1} - (\pi/2) \qquad \alpha_{1} = \beta_{1} - \beta_{s}$$

$$\lambda + \alpha_{2} = \beta_{2} - (\pi/2) \qquad \alpha_{2} = \beta_{2} - \beta_{s}$$

$$\lambda + \alpha_{\infty} = \beta_{\infty} - (\pi/2) \qquad \alpha_{\infty} = \beta_{\infty} - \beta_{s}$$
(82)

For the blade in the cascade configuration, the angle α_{∞} between the blade chord and the velocity W_{∞} plays the role of the angle of attack insofar as the resultant blade force A is perpendicular to the direction of W_{∞} . (Compare figs. l(a) to l(c).)

Between the velocities and angles there apply the relationships to be seen from figure 7(a).

$$\begin{aligned} -\cot \ \beta_1 &= \frac{W_{\infty t} + \Delta w}{W_n} = \frac{U_{\infty} \sin \lambda + V_{\infty} \cos \lambda + \Delta w}{U_{\infty} \cos \lambda - V_{\infty} \sin \lambda} \\ -\cot \ \beta_2 &= \frac{W_{\infty t} - \Delta w}{W_n} = \frac{U_{\infty} \sin \lambda + V_{\infty} \cos \lambda - \Delta w}{U_{\infty} \cos \lambda - V_{\infty} \sin \lambda} \\ -\cot \ \beta_{\infty} &= -\frac{1}{2} \left(\cot \ \beta_1 + \cot \ \beta_2\right) \\ &= \frac{W_{\infty t}}{W_n} = \frac{U_{\infty} \sin \lambda + V_{\infty} \cos \lambda}{U_{\infty} \cos \lambda - V_{\infty} \sin \lambda} \end{aligned}$$

Hence follows with equation (26)

$$-\cot \beta_1 = \frac{\tan \lambda + K + (1/\cos \lambda)(\Delta w/U_{\infty})}{1 - K \tan \lambda}$$
 (83)

$$-\cot \beta_2 = \frac{\tan \lambda + K - (1/\cos \lambda)(\Delta w/U_{\infty})}{1 - K \tan \lambda}$$
 (84)

$$-\cot \beta_{\infty} = (\tan \lambda + K)/(1 - K \tan \lambda)$$
 (85)

where, according to equations (44), (34), and (71)

$$\frac{\Delta w}{U_{\infty}} = \frac{1}{2} \frac{\Gamma}{U_{\infty} t} = \frac{\pi}{2} \frac{l}{t} \left[\left(A_{OO} + \frac{1}{2} A_{1O} \right) + K \left(A_{O\beta} + A_{1\beta} \right) \right]$$
 (86)

From equations (83) to (86) we can calculate the inflow and outflow angles as functions of $K = \tan \alpha_{\infty}$ after having first determined the coefficients A_{00} , A_{10} , $A_{0\beta}$, $A_{1\beta}$ from the systems according to equations (72) and (73). If we have obtained in this manner β_1 and β_2 , there follows the velocity ratio W_2/W_1 from the continuity equation according to

$$W_2/W_1 = \sin \beta_1/\sin \beta_2 \tag{87}$$

The pressure rise in the cascade thus attains, according to the Bernoulli equation $p_1 + \frac{\rho}{2} w_1^2 = p_2 + \frac{\rho}{2} w_2^2$, the form

$$\frac{p_2 - p_1}{\frac{\rho}{2} W_1^2} = 1 - \frac{\sin^2 \beta_1}{\sin^2 \beta_2}$$
 (88)

or, referred to the rate of flow W_n

$$\frac{p_2 - p_1}{\frac{\rho}{2} w_n^2} = \cot^2 \beta_1 - \cot^2 \beta_2$$
 (88a)

In the calculations so far, the component of the translational velocity $\rm U_{\infty}$ parallel to the chord was used for the formation of dimensionless velocities. For the final representation of the results and in the comparison of the theory with test results it is more expedient to refer all velocities to the inflow velocity $\rm W_1$ or the outflow velocity $\rm W_2$. From figure 7(a) we take for the conversion

$$W_1/U_{\infty} = (\cos \lambda - K \sin \lambda)/\sin \beta_1$$
 (89)

4.5.3 <u>Velocity distribution</u>. The velocity distribution on the blade contour is obtained from the velocity $U_{\rm S}$ on the blade chord according to equation (37) with

$$U_{S} = U_{\infty} + u = U_{\infty} + u_{\gamma E} + u_{\gamma G} + u_{q E} + u_{q G}$$
 (90)

The sum of the three terms $u_{\gamma G} + u_{qE} + u_{qG}$ was previously given in equation (63), the term $u_{\gamma E}$ in equation (20). If we divide up all coefficients of the singularity distributions according to equation (71), we obtain $U_{\rm S}/U_{\infty}$ in the form best suited for the numerical evaluation (with the upper sign for the upper side, the lower sign for the lower side of the profile)

$$\frac{U_{S}}{U_{\infty}} = 1 + B_{OO}g_{QO}^{*} + B_{2O}g_{Q2}^{*} + B_{3O}g_{Q3}^{*} + K(B_{O\beta}g_{QO}^{*} + B_{2\beta}g_{Q2}^{*} + B_{3\beta}g_{Q3}^{*}) + K(B_{O\beta}g_{QO}^{*} + A_{1O}g_{Q1}^{*} + A_{2O}g_{Q2}^{*} + K(A_{O\beta}g_{QO}^{*} + A_{1\beta}g_{Q1}^{*} + A_{2\beta}g_{Q2}^{*}) + K(A_{OO}g_{QO}^{*} + A_{1\beta}g_{Q1}^{*} + A_{2\beta}g_{Q2}^{*}) + K(A_{OO}g_{QO}^{*} + A_{1O}g_{Q1}^{*} + A_{1O}g_{Q1}^{*} + A_{2O}g_{Q2}^{*}) + K(A_{OO}g_{QO}^{*} + A_{1O}g_{Q1}^{*} + A_{1O}g_{Q1}^{*}) + K(A_{OO}g_{QO}^{*} + A_{1O}g_{Q1}^{*} + A_{1O}g_{Q1}^{*}) + K(A_{OO}g_{Q1}^{*} + A_{1O}g_{Q1}^{*} + A_{1O}g_{Q1}^{*}) + K(A_{OO}g_{Q1}^{*} + A_{1O}g_{Q1}^{*} + A_{1O}g_{Q1}^{*}) + A_{2O}g_{Q2}^{*} + A_{1O}g_{Q1}^{*})$$

$$(91)$$

Once we have determined the coefficients B_{00} , B_{20} , . . $A_{2\beta}$ from equations (72) and (73), we can calculate the velocity distribution from equations (37) and (91) with the aid of the downwash tables.

The velocity at the profile nose follows according to equation (38c) to be

$$\left(\frac{W_{K}}{U_{\infty}}\right)_{X=0} = A_{O}\sqrt{\frac{2l}{R_{N}}} = \left(A_{OO} + KA_{O\beta}\right)\sqrt{\frac{2l}{R_{N}}}$$
(92)

Finally, we obtain from the velocity distribution, by means of the Bernoulli equation, the distribution of the pressure p on the contour, in the form

$$\frac{1}{2} \rho W_1^2 = 1 - \left(\frac{W_K}{W_1}\right)^2 \tag{93}$$

4.5.4 Special inflow angles.— If the inflow direction (that is, $K = V_{\infty}/U_{\infty}$) for a prescribed staggered cascade is varied within sufficiently wide limits, flow conditions with pumping effect $(p_2 > p_1)$ and flow conditions with turbine effect $(p_2 < p_1)$ are obtained. Some special inflow directions also result which we shall now discuss briefly.

The shock-free inflow is characterized by that inflow angle for which the minimum-pressure peak at the nose is not present. Because of equation (38a) there applies here

$$K = \tan \alpha_{\infty st} = -A_{OO}/A_{O\beta}$$
 (94)

For a cascade free from deflection the inflow and outflow directions are parallel to one another, thus $\beta_1=\beta_2=\beta_\infty.$ For this cascade the resultant blade force is zero (c_A = 0). An unstaggered cascade of symmetrical profiles is, for reasons of symmetry, free from deflection when the inflow coincides with the direction of the chord ($\alpha_1=\alpha_2=\alpha_\infty=0$). For a staggered cascade of symmetrical profiles this is no longer true. On the contrary, as will be shown by the examples later, for such a cascade there must be, for a flow free from deflection, $\beta_1\neq\beta_S$ (fig. 8(a)). The value of K for the cascade free from deflection results from $c_A=0$ according to equation (77)

$$K_{cA=0} = (\tan \alpha_{\infty})_{cA=0} = -\frac{A_{00} + \frac{1}{2} A_{10}}{A_{0\beta} + \frac{1}{2} A_{1\beta}}$$
 (95)

•••••

For an inflow parallel to the chord $(\alpha_1 = 0)$ a deflection of the flow appears for the staggered cascade of symmetrical profiles (fig. 8(b)). In this case we obtain, because of $\alpha_1 = 0$ according to equation (82), tan $\lambda = -\cot \beta_1$, and thus equation (83) yields

$$K = \tan \alpha_{\infty} = -(\Delta w/U_{\infty})\cos \lambda$$

With $\Delta w/U_{\infty}$ according to equation (86) there follows

$$K = \frac{-\frac{\pi}{2} \frac{1}{t} \left(A_{OO} + \frac{1}{2} A_{1O} \right)}{\frac{\pi}{2} \frac{1}{t} \left(A_{O\beta} + \frac{1}{2} A_{1\beta} \right) + \frac{1}{\cos \lambda}}$$
(96)

The remaining aerodynamic coefficients for these particular flow states result by substitution of the given K-values into the formulas given above (equations (83) to (91)).

5. CALCULATION EXAMPLES

We shall test the accuracy of the calculation method first on examples for which exact solutions also exist.

5.1 The Unstaggered Plate Cascade

The simplest cascade is the unstaggered plate cascade with λ = 0 and β_s = 90° for which R. Grammel (ref. 21) indicated an exact solution which N. Scholz (ref. 22) represented in detail. The exact solution yields for the efficiency factor κ (ratio of the lift increase of the blade in the cascade configuration to the lift increase of the single blade)

$$\kappa = \frac{\mathrm{dc}_{\mathbf{A}}}{\mathrm{da}_{\infty}} \left(\frac{\mathrm{dc}_{\mathbf{A}}}{\mathrm{da}_{\infty}} \right)_{\mathbf{E}} = \frac{2}{\pi} \frac{\mathbf{t}}{l} \tanh \left(\frac{\pi l}{2\mathbf{t}} \right)$$
 (97)

and for the ratio of the outflow angle to the inflow angle

$$\cot \beta_2/\cot \beta_1 = e^{-\pi l/t}$$
 (98)

The approximate solution yields according to equations (36a) and (78)

$$\kappa = A_{0\beta} + \frac{1}{2} A_{1\beta}$$
 (99)

and according to equations (83), (84), and (86)

$$\frac{\cot \beta_{2}}{\cot \beta_{1}} = \frac{1 - \frac{1}{t} \frac{\pi}{2} \left(A_{O\beta} + \frac{1}{2} A_{1\beta} \right)}{1 + \frac{1}{t} \frac{\pi}{2} \left(A_{O\beta} + \frac{1}{2} A_{1\beta} \right)}$$
(100)

For the coefficients of the singularity distributions there applies according to equations (72) and (73)

$$A_{OO} = A_{1O} = ... = 0$$
 $B_{OO} = B_{2O} = ... = 0$ $B_{OB} = B_{2B} = ... = 0$

and

$$A_{0\beta}P_{0\nu} + A_{1\beta}P_{1\nu} + A_{2\beta}P_{2\nu} = -1$$

with

$$P_{0\nu} = f_{\gamma 0}^*$$
 $P_{1\nu} = f_{\gamma 1}^*$ $P_{2\nu} = f_{\gamma 2}^*$

according to equation (68) for the determination of $A_{O\beta}$, $A_{1\beta}$, and $A_{2\beta}$. The results of the calculation for three control points (n = 3) are given in table 5.

Figure 9 shows the efficiency factor κ (curve $\beta_S = 90^{\circ}$) as a function of the pitch ratio; agreement of the approximate calculation with the exact solution is very good. Figure 10 contains the result for the inflow and the outflow angles; here also the agreement of the approximate solution for three control points with the exact solution is excellent. In table 5 the position of the center of lift (aerodynamic center) was given also; its x-value we denote by $\kappa_{\rm Neutr}$. For the single

plate the aerodynamic center lies at the point $\frac{x_{\text{Neutr}}}{l} = \frac{1}{4}$. With narrowing spacing it shifts considerably forward. Finally, figure ll shows the circulation distribution over the plate chord for several pitch ratios. The approximate solution agrees again perfectly with the

exact solution. Because of the narrow spacing $\frac{t}{l} = 0.5$ the rear half of the plate contributes almost nothing to the lift.

5.2 The Staggered Plate Cascade

For the staggered two-dimensional plate cascade, also, there exists an exact solution (on the basis of the conformal mapping, compare refs. 15 and 22), although not in closed form. The results of the approximate calculation for several blade angles $\beta_{\rm S}$ are contained in table 6. Figure 9 shows the efficiency factor. Here again, the agreement of the approximate solution for three control points and the exact solution is excellent.

On the whole, since these results of the approximation method are so satisfactory for the cascade also, good calculation accuracy may be expected as well in other cases for which no exact solutions exist.

5.3 Parabolic Cascade

Whereas no difference between positive and negative angles of stagger λ exists for the plate cascade, we find that generally, for cascades with cambered profiles, the arrangements with $\lambda < 0$ (0 < $\beta_{\rm S} < 90^{\rm O}$) have turbine effect; those with $\lambda > 0$ (90° < $\beta_{\rm S} < 180^{\rm O}$), pump effect. The following results, calculated for the entire λ -range, give a first survey of the characteristic differences of the aerodynamic cascade coefficients for pumping and turbine cascades.

As the simplest case of a cascade with cambered profiles, we shall treat a cascade of infinitely thin parabolic profiles. With f as the height of camber, the equation of the mean camber line is given by the expression for $y_s(x)$ in section 3.5.2.

For the parabola as a single profile, the lift coefficient is

$$c_{A} = 2\pi \left[\alpha_{\infty} + 2 \left(\frac{f}{l} \right) \right]$$
 (101)

in perfect agreement for the exact and the approximate solutions. The angle of the shock-free inflow is $\alpha_{\infty st} = 0$ with $c_{Ast} = \frac{\mu_{\pi}f}{l}$. For zero lift there applies $(\alpha_{\omega})_{c_A=0} = \frac{-2f}{l}$.

For the parabolic profile in the cascade, the camber was based on the value $\frac{1}{2}$ = 0.1. Thus, the values according to table 7 result for the inclination of the mean camber line at the three control points. Table 8 contains the coefficients of the singularity distributions. the extensive results, we shall give only those for the total lift. Figure 12 shows the coefficients for the lift increase. For the unstaggered parabolic cascade, agreement with the plate cascade exists, whereas the lift increase for higher λ -values is considerably smaller than for the plate cascade in the case of the parabolic cascade with pumping effect, and considerably larger in the case of the parabolic cascade with turbine effect. Figure 13 contains the results for the zero-lift direction. For the single blade $\left(\frac{t}{l} = \infty\right)$, $\left(\alpha_{\infty}\right)_{c_{A}=0} = \frac{-2f}{l} = -0.2 = -11.3^{\circ}$ is valid. For the other limiting case of the blades spaced very closely $\left(\frac{t}{l}=0\right)$, we have the blade-congruent flow with a zero-lift angle which is equal to the angle δ_H of the end tangent with the chord: $-(\alpha_{\infty})_{c_{\Lambda}=0} = \delta_{H} = \frac{4f}{l} = 0.4 = 21.8^{\circ}$. For finite values of the spacing, the values of $\left(\alpha_{\infty}\right)_{c_{\Lambda}=0}$ lie approximately between these limits for all angles of stagger. Figure 14 shows the outflow angle α_2 as a function of the inflow angle α_1 . For the limiting case of the very closely spaced blades (blade-congruent flow, streamline theory), the outflow angle - independently of the inflow angle - is equal to δ_H (thus $-\alpha_2 = \delta_H = 21.8^{\circ}$). For spacings of finite magnitude, the outflow angle also depends only slightly on the inflow angle, particularly in the case of narrow spacing. However, the difference compared to the blade-end tangent, the so-called exaggeration angle (ref. 27) is considerable, for instance, approximately 9° for $\frac{t}{l} = 1.0$.

5.4 Cascade of Blades With Symmetrical Profiles

Furthermore, an extensive methodical system of cascades of blades with symmetrical profiles has been investigated (profile NACA 0010, cf. sec. 3.5.4). Such cascades are excellent for fundamental investigations due to the fact that the angle of stagger need be changed only in one direction, in the same manner as for the plate cascade and in contrast to cascades of cambered blades; there exists no difference between positive and negative stagger angles. This cascade shows, therefore, the thickness effect in a particularly clear form. Twelve arrangements were calculated,

namely the blade angles $\beta_s = 90^{\circ}$, 120°, and 150° for the pitch ratios $\frac{t}{s}$ = 0.5, 0.75, 1.0, and 1.5. We shall give only a very limited selection from the extremely voluminous results. Figure 15 shows the efficiency factor κ as a function of β_s and of t/l. (For comparison, the values of the plate cascade according to figure 9 have also been plotted.) As in the case of the single airfoil, the thickness has only a very slight influence on the lift increase. A particularly remarkable result is obtained for the zero-lift direction also contained in figure 15. It is identical with the inflow and outflow direction of the cascade free from deflection. Whereas an unstaggered cascade of symmetrical profiles has the effect of being free from deflection for an inflow parallel to the chord, a staggered cascade of such profiles gives, for an inflow parallel to the chord, a deviation in such a manner that the direction of outflow is turned from the direction of the chord toward the cascade front. flow is free from deflection only when the cascade is approached by the flow at a certain angle with respect to the chord. For narrow spacing and considerable stagger, values (α_{∞}) of 3° to 4° are attained. and considerable stagger, values $(\alpha_{\infty})_{c_{\Lambda}=0}$ The values of $(\alpha_{\infty})_{c_{\Lambda}=0}$ are probably about proportional to the profile thickness. Information regarding this effect may also be found in reference 23 by B. Eckert.

Figures 16 to $2^{\rm h}$ contain a small selection from the pressure distributions. It can be seen from the added velocity triangles whether we deal with pumping or with turbine cascades. For the unstaggered cascades $\beta_{\rm S}=90^{\circ}$ the pressure variation is of a similar nature as in the case of the single profile. However, the lift loading of the blade in the cascade lies closer to the profile nose, compared to the single blade. The entire rear half of the blade does not contribute anything to the lift, particularly in the case of narrow spacing. For the staggered cascade ($\beta_{\rm S}\neq90^{\circ}$), the pressure variation, for an inflow parallel to the chord ($\alpha_{\rm l}=0$), is different on both sides of the blade. The larger negative pressure lies close to the blade nose. Narrow spacings even cause overlapping of the pressure distribution on the upper and lower sides on the rear part of the blade. If the direction of inflow deviates from the direction parallel to the chord, a large negative-pressure peak is always produced at the profile nose. The positive $\alpha_{\rm l}$ -values now

¹³ Much more numerous results for unstaggered cascades, including the loss coefficients (also for other profile thicknesses and for cambered profiles) have been presented by L. Speidel (ref. 3).

correspond to pumping cascades, the negative α_1 -values, to turbine cascades. The differences in the pressure distribution are striking, particularly on the rear part of the blade. For the pumping cascades the loading on the rear part of the profile increases with increasing angle of attack; whereas for the turbine cascades, particularly in the case of narrow spacing, the overlapping of the pressure distributions already present at $\alpha_1=0$ is still increased. The rear parts of the blades of turbine cascades (particularly for narrow spacings and large stagger) make, therefore, a negative contribution to the lift. For equal total lift we obtain, therefore, larger negative-pressure peaks on the turbine than on the pumping cascades.

5.5 Cascades of Blades With Cambered Thick Profiles

Finally, we shall report a few results from a voluminous methodical system of cascades with blades of cambered thick profiles NACA 8410. (Cf. sec. 3.5.5.) 14 In this case, the influences of the thickness and the camber are superimposed in the cascade. The blade profile selected here, of 8-percent camber and 10-percent thickness, is usable both as a turbine and as a pumping cascade, as has been shown by investigations on loss coefficients. Twenty different arrangements of this profile in the cascade configuration were investigated: the blade angles $\beta_{\rm g} = 30^{\circ}$ and 60° with turbine effect, the blade angle $\beta_s = 90^{\circ}$ and the angles $\beta_s = 120^{\circ}$ and 150° with pumping effect at pitch ratios 0.5, 0.75, 1.0, and 1.5. The complete calculation for a cascade from this series may be found in section 7.2; table 9 contains the coefficients of the singularity distributions. Figure 25 shows the results for the efficiency factor k (relative lift increase) as a function of the reciprocal pitch ratio and of the blade angle; for comparison, the variation for the plate cascade has also been given. For extremely large stagger, corresponding to $\beta_s = 30^{\circ}$ and 150°, large differences between the pumping and the turbine cascades, and also compared to the plate cascade, appear. Figure 25 contains, in addition, the variation of the lift coefficient for $\alpha_m = 0$. For cambered profiles this value is more suitable for characterizing the lift curve $c_{A}(\alpha_{\infty})$ than the value given for the former examples, α_{∞} for $c_A = 0$, because the latter frequently lies in the region of separated flow, for cambered profiles. Figures 26 to 30 show for all cascades of this systematic family the inflow and outflow angles. The so-called

¹⁴The results of this section are taken from an unpublished report by L. Speidel (ref. 24) which also contains extensive results on loss coefficients.

exaggeration angle $\,\delta$, that is, the angle between the outflow direction and the tangent to the mean camber line at the trailing edge, is given in the range of the inflow angles $\,\beta_1\,$ for which no significant flow separation occurs (according to the boundary-layer calculations not given here). For wide spacings this angle exaggeration always has higher values than for narrow spacings. We note, however, that the amount of $\,\delta\,$ is, in addition, considerably modified by the friction effect. Furthermore, we see from figures 26 to 30 that for turbine cascades $\,\beta_{\rm S} = 30^{\circ}\,$ and $\,60^{\circ}\,$ the range of permissible angles of attack $\,\alpha_{1}\,$ of the cascade is considerably larger than for pumping cascades $\,(\beta_{\rm S} = 120^{\circ}\,$ and $\,150^{\circ}\,$).

Figure 31 shows the velocity distribution along the profile contour for the calculation example according to section 7.2 for several K-values. A comparison with figure 6 shows that, particularly on the suction side, the pressure distribution in the cascade deviates considerably from that on the single profile. In figures 32 to 98, finally, a large number of pressure distributions has been compiled. For the pumping cascades, usable pressure distributions result in a range Δa_1 of the inflow angle a_1 , referred to the blade chord, which amounts at most to about $\Delta a_1 = 20^\circ$; for turbine cascades, in contrast, up to $\Delta a_1 = 70^\circ$. This is in good agreement with experience, according to which pumping cascades in general are much more sensitive to variations of the inflow angle than are turbine cascades.

We shall omit giving more details on the pressure distributions since the latter represent, primarily, the starting point for the calculation of the loss coefficients which we shall not treat in this report.

6. COMPARISON WITH TEST RESULTS

In conclusion, we shall give, to a limited extent, a comparison of the theoretical results with measurements, with the aid of the pressure distribution on the profile since this is rather sensitive to variations of the geometric parameters and of the inflow angle, and also is relatively little influenced by the viscosity effects (neglected in the theory) as long as no strong separation occurs. The pressure-distribution measurements on two-dimensional cascades with the blade profile NACA 8410 have been taken from extensive systematic measurements of N. Scholz. The two-dimensional cascade tunnel used for the measurements has been described in detail in references 1 and 25.15 The following parameters

¹⁵Compare also reference 26, especially figure 1 on page 130 of that report.

could be varied: the pitch ratio t/l, the angle of stagger $\lambda = \beta_{\rm S} - 90^{\rm O}$, and the inflow angle $\beta_{\rm l}$. The length of the blade chord was l=200 mm, the height of the blade h=600 mm. The average blade was provided, in its center section, with 28 pressure-tap orifices distributed over the circumference. Particular care was used in order to obtain a two-dimensional flow. For this purpose, the side walls of the cascade tunnel were provided with a suction device (porous walls). The outflow velocity was for all tests approximately $W_2=40$ m/s; the Reynolds number referred to the outflow velocity and the blade chord was therefore $W_2 l/\nu \approx 6 \times 10^5$ and the Mach number relative to the sonic velocity c was $M_2=W_2/c=0.12$; the flow showed, therefore, incompressible behavior.

In figures 99 to 112, a small selection from the pressure-distribution measurements has been compared with the theoretical results above; table 10 contains the pertaining lift coefficients c_A and outflow angles β_2 . Figures 99 to 104 show, for constant spacing $(\frac{t}{l} = 1)$, the variation of the pressure distribution with the angle of attack α_1 , for the turbine cascade with $\beta_s = 60^{\circ}$ and for the pumping cascade with $\beta_s = 120^{\circ}$. No separation occurs for the turbine cascade; whereas the pumping cascade shows, on the suction side, a slight separation at $\alpha_1 = 15^{\circ}$ and a somewhat more marked one at $\alpha_1 = 20^{\circ}$. The agreement between calculation and measurement is excellent for the turbine cascade; it is not quite as good for the pumping cascade, because of this separation, but on the whole still quite satisfactory. Figures 105 to 112 show the variation of the pressure distribution with the pitch ratio t/l for constant angle of attack α_1 , for a series of turbine cascades with $\beta_s = 60^{\circ}$ and pumping cascades with $\beta_S = 120^{\circ}$. Here, the agreement of the calculation with the test is very good for both turbine and pumping cascades; particularly, if one takes into consideration that the theoretical pressure distributions do not contain the friction effect.

7. DETAILS OF THE CALCULATION

7.1 Calculation of the Tables of Functions for the Induced Velocities

The induced velocities $u_{\gamma G}$, $v_{\gamma G}$, u_{qG} , and v_{qG} of the remainder of the cascade must be calculated numerically as functions of the pitch ratio t/l, of the angle of stagger λ , and the relative coordinate x/l along the chord. These velocities are defined by equations (53) to (56) with the influence function F according to equation (50). Since we obtain for $\lambda = 0$ also J(F) = 0

$$\left(u_{\gamma G}\right)_{\lambda=0} = 0 \qquad \left(v_{qG}\right)_{\lambda=0} = 0 \qquad (102)$$

is valid. In addition, there exist, as can be easily determined, the following symmetry relations

$$u_{\gamma G}(-\lambda) = -u_{\gamma G}(\lambda) \qquad v_{\gamma G}(-\lambda) = v_{\gamma G}(\lambda)$$

$$u_{qG}(-\lambda) = u_{qG}(\lambda) \qquad v_{qG}(-\lambda) = -v_{qG}(\lambda)$$
(103)

Thus it is necessary only to calculate the downwash functions for positive stagger angles λ .

If the series expressions according to equations (18) and (19) for $\gamma(x)$ and q(x) are introduced into equations (53) to (56), one obtains, with φ' as the φ -value pertaining to x', by comparison with equations (57) to (60), the formulas for the downwash functions

$$g_{q0} = \frac{1}{t} \int_{\xi'=0}^{1} \left(\cot \frac{\varphi'}{2} - 2 \sin \varphi' \right) R(F) d\xi'$$

$$g_{q2} = \frac{1}{t} \int_{\xi'=0}^{1} \sin(2\varphi') R(F) d\xi'$$

$$g_{q3} = \frac{1}{t} \int_{\xi'=0}^{1} \sin(3\varphi') R(F) d\xi'$$

$$f_{q0} = -\frac{1}{t} \int_{\xi'=0}^{1} \left(\cot \frac{\varphi'}{2} - 2 \sin \varphi' \right) J(F) d\xi'$$

$$f_{q2} = -\frac{1}{t} \int_{\xi'=0}^{1} \sin(2\varphi') J(F) d\xi'$$

$$f_{q3} = -\frac{1}{t} \int_{\xi'=0}^{1} \sin(3\xi') J(F) d\xi'$$
(107)

The influence function F depends, according to equation (50), on $(\xi - \xi')l/t$ and λ . Its real and imaginary parts are 16

$$R(F) = \frac{\cos \lambda \sinh \left(2\pi \frac{x-x'}{t} \cos \lambda\right) + \sin \lambda \sin \left(2\pi \frac{x-x'}{t} \sin \lambda\right)}{\cosh \left(2\pi \frac{x-x'}{t} \cos \lambda\right) - \cos \left(2\pi \frac{x-x'}{t} \sin \lambda\right)} - \frac{t}{\pi(x-x')}$$
(108)

¹⁶ compare reference 4, especially equations (16a) and (16b) on page 29. There one finds also in the table 1 on page 30 the numerical values of R(F) and J(F) for $\frac{(x-x')}{t} = 0$ to ∞ for angles of stagger $\lambda = 0^{\circ}$, 15°, 30°, 45°, 60°, 75°, and 90°.

$$J(F) = \frac{\sin \lambda \sinh \left(2\pi \frac{x - x'}{t} \cos \lambda\right) - \cos \lambda \sin \left(2\pi \frac{x - x'}{t} \sin \lambda\right)}{\cosh \left(2\pi \frac{x - x'}{t} \cos \lambda\right) - \cos \left(2\pi \frac{x - x'}{t} \sin \lambda\right)}$$
(109)

We need calculate only the functions $g_{\gamma 0}$, $g_{\gamma 1}$, ..., $f_{\gamma 0}$, $f_{\gamma 1}$, ... of the circulation distribution. The functions g_{q0} , g_{q2} , ..., f_{q0} , f_{q2} , ... of the source distribution then result very simply according to the relationships following from equations (104) to (107)

$$g_{q0} = -f_{\gamma 0} + 2f_{\gamma 1} \qquad f_{q0} = g_{\gamma 0} - 2g_{\gamma 1}$$

$$g_{q2} = -f_{\gamma 2} \qquad g_{q2}^* = -f_{\gamma 2}^* \qquad f_{q2} = g_{\gamma 2}$$

$$g_{q3}^* = -f_{\gamma 3} \qquad g_{q3}^* = -f_{\gamma 3}^* \qquad f_{q3} = g_{\gamma 3}$$
(110)

Because of equations (102) and (103) there applies for $\lambda = 0$

$$g_{\gamma 0} = g_{\gamma 1} = g_{\gamma 2} = \dots = 0$$

$$f_{q0} = f_{q2} = f_{q3} = \dots = 0$$
(111)

and for arbitrary λ -values

$$g_{\gamma 0}(-\lambda) = -g_{\gamma 0}(\lambda) \qquad g_{q0}(-\lambda) = g_{q0}(\lambda)$$

$$g_{\gamma 1}(-\lambda) = -g_{\gamma 1}(\lambda) \qquad g_{q2}(-\lambda) = g_{q2}(\lambda)$$

$$f_{\gamma 0}(-\lambda) = f_{\gamma 0}(\lambda) \qquad f_{q0}(-\lambda) = -f_{q0}(\lambda)$$

$$f_{\gamma 1}(-\lambda) = f_{\gamma 1}(\lambda) \qquad f_{q2}(-\lambda) = -f_{q2}(\lambda)$$

$$(112)$$

The downwash functions were calculated for pitch ratios $\frac{t}{l} = 0.5$, 0.75, 1.0, 1.25, 1.5, and 2.0 and for stagger angles $\lambda = 0^{\circ}$, 15°, 30°, 45°, 60°, and 75°. The Simpson rule, based on 20 points, served for calculating the integrals in equations (104) and (105). The results have been compiled in the cascade downwash tables in the appendix.

7.2 Example for the Determination of the Coefficients in the Singularity Distributions and of the Aerodynamic Coefficients

For clarification of the entire calculation process, we shall fully calculate here, as an example, a staggered cascade with cambered blade profiles of finite thickness. This is the most general case where no simplifications occur in the solution of the systems of equations for the coefficients of the singularity distributions.

The calculation procedure consists of four steps:

- 1. Determining the coefficients of the systems of equations (equations (72) and (73))
- 2. Solving these systems of equations for the coefficients of the singularity distribution
- 3. Calculating the aerodynamic coefficients
- 4. Calculating the velocity distribution along the blade contour.

The first step, tables 11 and 12, requires, aside from writing down the fixed values $q_{0\nu}$, $q_{2\nu}$, $q_{3\nu}$ (compare also table 1), determining the slope of the mean camber line and of the thickness distribution at the three control points. Then the values of the 10 downwash functions at the three control points have to be taken from the downwash tables of the appendix (columns 8 to 17 in table 11), and with them the coefficients $Q_{0\nu}$, ..., $P_{0\nu}$, ...,

The second step includes writing down the systems of equations, equations (72) and (73), according to table 13, and their solution, table 14. A method of successive approximation is used. Both systems are split up into two systems of three equations each. For the first system of equation (72) one may use the method of first solving the first three equations with the assumption $B_{00} = B_{20} = B_{30} = 0$. The values of A_{00} , A_{10} , A_{20} thus obtained are substituted into the right

sides of the last three equations of this system, which now yield B_{00} , B_{20} , B_{30} (first approximation). With these values one enters into the right sides of the first three equations and obtains improved values of A_{00} , A_{10} , A_{20} (second approximation), etc. This method converges very rapidly in all cases. (In table 14 we had to calculate only up to the third approximation.)

In the third step, the aerodynamic coefficients are calculated (inflow and outflow angles, lift coefficient, pressure gradient in the cascade, inflow and outflow velocities). Equations (83) to (89) are available for this purpose. Table 15 contains the results. The contour velocity, resulting in the fourth step from equations (37) and (89) to (91), from which follows the pressure distribution on the blade according to equation (93), have already been shown in figure 31.

8. SUMMARY

A simple method for calculating the frictionless incompressible flow through a two-dimensional cascade is described for the so-called second main problem where the entire blade and cascade geometries are prescribed and the aerodynamic coefficients and the pressure distribu-The calculation method is set up in such a manner tion are desired. that each geometric parameter (pitch ratio, stagger angle, and blade profile) can be varied independently of the other parameters. method represents a transfer of the theory of the single airfoil, according to W. Birnbaum and H. Glauert, to the cascade; thus a singularity method where every cascade blade is replaced by continuous vortex and source-sink distributions which are expanded into a series, according to H. Glauert. For the circulation and the source-sink distributions, there result two coupled integral equations whose solution, with the aid of the three-quarter-chord theorem, may be reduced to the solution of two systems of linear equations. The coefficients of these systems of equations are formed from the dimensionless induced velocities of the cascade which depend on the pitch ratio and the blade angle of the cascade. This induced velocity field of the cascade has been calculated universally (cascade-downwash tables) so that, for a prescribed cascade, essentially only two systems of six linear equations each have to be solved. Solutions according to this approximation method for the single profile and for the plate cascade agree well with the two known exact solutions. Furthermore, numerous cases have been calculated for cascades with a parabolic profile, with a symmetrical NACA profile, and with a cambered NACA profile. Measured values of the pressure distributions on

•••••

the blade, which have been taken for the case of the cambered NACA profile, show good agreement with the calculated distributions for pumping as well as for turbine cascades.

Translated by Mary L. Mahler National Aeronautics and Space Administration

REFERENCES

- •
- 1. Schlichting, H.: Ergebnisse und Probleme von Gitteruntersuchungen.

 Z. Flugtechn. Bd. 1, 1953, pp. 109-122; (see, also, English translation: Problems and Results of Investigations on Cascade Flow. Jour. Aero. Sci., Bd. 21, 1954, pp. 163-178.)
- 2. Schlichling H., and Scholz, N.: Über die theoretische Berechnung der Strömungsverluste eines ebenen Schaufelgitters. Ing.-Arch., Bd. 19, 1951, pp. 42-65.
- 3. Speidel, L.: Berechnung der Strömungsverluste von ungestaffelten ebenen Schaufelgittern. Diss. Techn. Hochschule Braunschweig, 1953; (see also: Ing.-Arch., Bd. 22, 1954, pp. 295-322.)
- 4. Scholz, N.: Strömungsuntersuchungen an Schaufelgittern. Teil II: Ein Berechnungsverfahren zum Entwurf von Schaufelgitterprofilen. VDI-Forsch.-Heft 442 (Düsseldorf), 1954; (see, also, Scholz, N.: On the Calculation of the Potential Flow Around Airfoils in Cascade. Jour. Aero. Sci., Bd. 18, 1951, pp. 68-69.)
- 5. Weinig, F.: Die Strömung um die Schaufeln von Turbomaschinen. Johann Ambrosius Barth, (Leipzig), 1935.
- 6. Garrick, I. E.: On the Plane Potential Flow Past a Lattice of Arbitrary Airfoils. NACA Rep. 788, 1944.
- 7. Traupel, W.: Die Berechnung der Potentialströmung durch Schaufelgitter. Sulzer Techn. Rdsch., No. 1, 1945.
- 8. Birnbaum, W.: Die tragende Fläche als Hilfsmittel zur Berechnung des ebenen Problems der Tragflügeltheorie. Z. a. M. M. vol. 3, 1923, pp. 290-297.
- 9. Glauert, H.: Die Grundlagen der Tragflügel- und Luftschraubentheorie. (Berlin), 1929; (see, also, The Elements of Aerofoil and Airscrew Theory. Second Ed., Cambridge Univ. Press, 1947. (Reprinted 1948.))
- 10. Riegels, F.: Das Umströmungsproblem bei inkompressiblen Potentialströmungen. Ing.-Arch., Bd. 16, 1948, pp. 373-376 and Bd. 17, 1949, pp. 94-106.
- 11. Allen, H. Julian: General Theory of Airfoil Sections Having Arbitrary Shape or Pressure Distribution. NACA Rep. 833, 1945.

- 12. Schilhansl, M.: Näherungsweise Berechnung von Auftrieb- und Druckverteilung in Flügelgittern. Jb. 1927 Wiss. Ges. Luftf., pp. 151-167.
- 13. Betz, A.: Diagramme zur Berechnung von Flügelreihen. Ing.-Arch., Bd. 2, 1931, pp. 359-371.
- 14. Ackeret, J.: Zum Entwurf dichtstehender Schaufelgitter. Schweiz. Bauztg. Bd. 60, 1942, p. 120.
- 15. Pistolesi, E.: Sul calcolo dei schiere infinite di ali sottili. Aerotechnica vol. 17, 1937. (Available as NACA TM 968, 1941.)
- 16. Lieblein, V.: Zur Berechnung der Auftriebscharakteristik eines Profiles im Gitterverband. Ing.-Arch., Bd. 18, 1950, pp. 281-290.
- 17. Spurr, Robert A., and Allen, H. Julian: A Theory of Unstaggered Airfoil Cascades in Compressible Flow. NACA Rep. 888, 1947.
- 18. Katzoff, S., Finn, Robert S., and Laurence, James C.: Interference Method for Obtaining Potential Flow Past an Arbitrary Cascade of Airfoils. NACA Rep. 879, 1947. (Formerly NACA TN 1252.)
- 19. Wieghardt, K.: Über die Auftriebsverteilung des einfachen Rechteckflügels über die Tiefe. Z. a. M. M., Bd. 19, 1939, pp. 257-270.
- 20. Scholz, N.: Beiträge zur Theorie der tragenden Fläche. Ing.-Arch., Bd. 18, 1950, pp. 84-105.
- 21. Grammel, R.: Die hydrodynamischen Grundlagen des Fluges. (Braunschweig), 1917.
- 22. Scholz, N.: Berechnung der Druckverteilung der ebenen Platte im Gitterverband. Abh. Braunsch. Wiss. Ges., Bd. 5, 1953, pp. 152-163.
- 23. Eckert, B.: Axialkompressoren und Radialkompressoren. (Berlin-Göttingen-Heidelberg), 1953.
- 24. Speidel, L.: Ergebnisse systematischer Untersuchungen an ebenen Schaufelgittern. Teil IV: Theoretische Ergebnisse für das Profil NACA 8410. Bericht 54/8 des Instituts für Strömungsmechanik der Techn. Hochschule Braunschweig, 1954.
- 25. Scholz, N.: Über die Durchführung systematischer Messungen an ebenen Schaufelgittern. Habilitation schrift der Technischen Hochschule Braunschweig 1955. Bericht 54/2 des Instituts für Strömungsmechanik der Techn. Hochschule Braunschweig, 1954.

- 26. Speidel, L.: Einfluß der Oberflächenrauhigkeit auf die Strömungsverluste in ebenen Schaufelgittern. Forsch. Ing.-Wes., Bd. 20, 1954, pp. 129-140.
- 27. Pfleiderer, C.: Strömungsmaschinen. (Berlin), 1952.

TABLE 1

SYSTEMS OF EQUATIONS FOR THE COEFFICIENTS OF THE

CIRCULATION DISTRIBUTION AND OF THE SOURCE

DISTRIBUTION OF THE SINGLE PROFILE

System according to equation (32)	$-A_{00} = y_{s1}' (or A_{10} = y_{s1}')$	$A_{00} + 0.25A_{10} = y_{s1}$	$-A_{00} - 0.75A_{10} = y_{s2}$	$-4_{00} + 0.5$ Alo - 0.5A ₂₀ = y_{sl}^{t}	$-1.1269B_0 - 0.3287B_2 - 0.8765B_3 = y_{d2}'$	$-0.8040B_0 - 0.9213B_2 + 0.9827B_5 = y_{43} - A_{00} - 0.8333A_{10} + 0.3889A_{20} = y_{53}$
System according to equation (29)	$-1.1547B_0 = y'_{d1}$	$-0.6455B_0 + 0.4841B_2 = y_{dl}$	$-0.9449B_0 - 0.9922B_2 = y_{d2}^{1}$	$0.8660B_2 = y_{d1}$	-1.1269B ₀ - 0.3287B ₂ - 0.8765B ₃	-0.8040B ₀ - 0.9213B ₂ + 0.9827B ₃
Number of Coordinate of control the control point x	$x_1 = \frac{2}{4}t$	$1 \frac{8}{5} = 1$	$x_2 = \frac{7}{8}t$	$\mathbf{x_1} = \frac{5}{12} t$	$x_2 = \frac{1}{12} t$	$x_3 = \frac{11}{12}i$
Number of control points n	1	(N		5	

TABLE 2

CONTOURS OF THE NACA OOLO AND 8410 PROFILES

		₽6 + +>	1.032 1.032 1.003 1.003 1.003 1.003 1.003 1.003 1.003
	Relative distance of the mean camber line from the chord	P-0-1	01000000000000000000000000000000000000
rofile	Relative profile thickness	1 OT	0 2 2 2 2 3 2 3 2 3 2 3 2 3 3 2 3 3 3 3
NACA 8410 profile	Relative distance from the chord of the upper side of the the contour	<u> </u>	0 5.40 6.77 6.77 7.85 9.71 12.9 12.9 12.9 6.10 6.10
	Relative distance from the chord of the lower side of the contour	1 ₋₀ T	0.1.1. 11.1. 1.80 1.30 1.47 1.47 1.45 1.50 1.66
	Relative listance from the leading edge	1/x	0 20 50 50 50 50 50 50 50 50 50 50 50 50 50
file		√1 + y _d	1.076 1.031 1.031 1.003 1.000 1.000 1.000 1.002 1.003 1.003 1.003 1.005
NACA 0010 profile	1 ##	7 -01	00000000000000000000000000000000000000
NACA	ive nce the ng	ı/x	o gʻʻçii i gʻʻgʻç 3 gʻʻgʻc 3 gʻ'gʻc 3 gʻgʻc 3 gʻ'gʻc 3 gʻ'gʻc 3 gʻ'gʻc 3 gʻgʻc 3 gʻgʻc 3 gʻgʻgʻc 3 gʻgʻgʻgʻgʻgʻgʻgʻgʻgʻgʻgʻgʻgʻgʻgʻgʻgʻg

TABLE 3

SLOPES OF THE TANGENTS AT THE THREE CONTROL POINTS FOR THE

NACA 0010 AND 8410 PROFILES

Number of		NACA 0010 profile	NACA 8410) profile
control point,		Tangential slope of the thickness distribution, Ydv	Tangential slope of the thickness distribution, ydv	1
1	$\frac{3}{12}$ = 0.250	0.0210	0.0156	0.150
2	$\frac{7}{12}$ = 0.583	0660	0635	105
3	$\frac{11}{12}$ = 0.917	-0.1055	1024	201

TABLE 4

COEFFICIENTS OF THE SINGULARITY DISTRIBUTIONS FOR THE NACA 0010 AND 8410 PROFILES AS SINGLE PROFILES

a calculated from the simplified kinematic flow conditions, equations (15) and (16); b calculated from the complete kinematic flow conditions, equations (6) and (7).

Coefficient	NACA 0010	O profile	NACA 8410) profile
Coefficient	a	Ъ	a	ъ
A ₀₀	000	0	-0.0332	-0.0538
A ₁₀		0	.3229	.3472
A ₂₀		0	.0894	.1153
B ₀	0.0716	0.0700	0.0728	0.0713
B ₂	.0242	.0275	.0180	.0204
B ₃	0260	0187	0278	0213

RESULTS FOR THE UNSTAGGERED PLATE CASCADE (λ = 0, $\beta_{\rm S}$ = 90°)

APPROXIMATE CALCULATION FOR THREE CONTROL

POINTS $(n = 3, \nu = 1 \text{ to } 3)$

Pitch ratio,	_	Coefficient	ıts	Efficiency factor k of the lift increase	ciency factor of the lift increase	Angle ratio,	oot β_2 cot β_1	Relative distance from the leading edge of the aerodynamic center, *Neutr/1	ance ling le c cr/l
<u>,</u>	Аов	А1в	А2в	Approximation according to equation (99)	Exact according to equation (97)	Approximation according to equation (100)	Exact according to equation (98)	Approximation Exact	Exact
2001.00	0.5568 .6865 .7693 .8257 .8654 .9147	0.5568 -0.4758 -0.6865445476933751298729872584258425901590	-0.1250 0806 0447 0261 0142 0054	0.319 .465 .583 .676 .746 .746	0.317 .463 .584 .677 .746 .835	0.000 .014 .044 .044 .081 .124 .207	0.002 .015 .043 .081 .124 .208	0.113 .153 .180 .200 .213 .227	0.109 .151 .186 .199 .212 .227

TABLE 6 RESULTS OF THE APPROXIMATE CALCULATION FOR THE STAGGERED PLATE CASCADE

Approximate Calculation for Three Control Points (n = 3)

Blade angle, $\beta_{\rm S}$	Pitch ratio, t/l	Co	pefficien	ts	Efficiency factor of the lift
PS	۵, ت	Αοβ	Α _{1β}	А2в	κ
60°	0.5 .75 1.0 2.0	0.6270 .7415 .8203 .9477	-0.5168 4102 3015 0968	-0.1224 0384 0034 +.0026	0.359 .536 .670 .896
45°	0.5 .75 1.0 2.0	0.7302 .8131 .8926 .9891	-0.5568 3176 1632 0139	-0.0990 +.0573 .0629 .0083	0.452 .654 .811 .982
30°	0.5 .75 1.0 2.0 ∞	0.9207 .9131 1.0243 1.0455	-0.5679 +.0300 .2015 .1023	-0.0090 +.3350 .1788 .0071	0.637 .928 1.125 1.097

SLOPE OF THE MEAN CAMBER LINE OF THE PARABOLIC

PROFILE WITH THE CAMBER

 $\frac{f}{l} = 0.1$ AT THE THREE

CONTROL POINTS

Number of control point, ν	1	2	3	
Relative distance, x_{ν}/l	3/12	7/12	11/12	1
Slope, y _{sv}	0.2	-0.0667	-0.3333	-0.4

COEFFICIENTS OF THE SINGULARITY DISTRIBUTIONS, EFFICIENCY FACTOR AND ZERO-LIFT DIRECTION

CAMBER RATIO f = 0.1

FOR PARABOLIC CASCADES WITH THE

Blade		Pt+ch			Coefficients	ients			Efficiency	Angle of attack for
angle, βs, deg	angle, λ, , deg	ratio, t/l	10 A ₀₀	10 A ₀₁	10 A ₀₂	Аов	Адв	Агв	lift, K	$(\alpha_{\infty})_{cA} = 0,$ deg
30	9-	0.5 .15 1.0 2.0	180. 929. 986.	2.961 4.764 4.775 4.214	-1.682 -469 -317 -517	1.362 1.242 1.270 1.092	-0.437 .407 .488 .151	-0.502 .064 041 059	1.143 1.445 1.514 1.167	11.8 11.8 4.01.
8	-30	0.5 .75 1.0 2.0	0.360 .258 .185	1.904 2.731 3.210 3.795	-0.481 306 199 063	0.682 .807 .885 .977	-0.474 362 252 070	-0.189 111 069 027	0,445 .626 .756 .942	-16.4 -14.5 -13.3 -11.8
8.	0	0.5 .75 1.0 2.0	0.065 .036 .019 .003	1.857 2.509 2.934 3.642	-0.106 057 027 004	0.557 .687 .769	-0.476 443 373 159	-0.125 081 045 005	0.319 .465 .583 .836	-17.3 -15.6 -14.3 -12.3
120	30	0.5 .75 1.0 2.0	-0.220 202 161 060	2.399 3.003 3.345 3.808	0.265 .231 .179 .062	0.601 .698 .773 .922	-0.580 466 352 123	-0.093 .008 .046 .029	0.312 465 597 .860	-17.5 -15.6 -14.2 -12.1
150	60	0.5 .75 1.0 2.0	-1.101 640 374 079	4.807 4.761 4.613 4.196	1.4.12 .664 .366 .078	0.839 .782 .883 1,004	-0.859 274 024 .057	-0.056 .132 .143 .445	0.410 .645 .871	-17.5 -15.5 -13.6 -11.7
Single	Single profile	8	0	4	0	-1	0	0	н	-11.3

TABLE 9 COEFFICIENTS OF THE SINGULARITY DISTRIBUTIONS

FOR CASCADES OF NACA 8410 PROFILES

Blade	Stagger	Pitch					Coef	Coefficients						
angle, βs, deg	angle, λ,	ratio, t/l	A00	OT.	A20	Фов	Αıβ	А2в	^B 00	^B 20	^B 30	gO _R	Вгв	Вув
30	89	0.5 .75 1.0 1.25 1.5	0.0652 .0312 .0042 0177	0.3543 .4295 .4129 .3874 .3715	0.2543 .1548 .1548 .106	1.1847 1.1342 1.1788 1.1590 1.1212	-0.2583 .3859 .4383 .3446 .2490	0.2661 .3977 .1384 .0258	0.1213 .0956 .0952 .0764	0.0199 .0165 .0194 .0196	-0.0504 0413 0315 0262	0.2201 .1556 .0976 .0595	0.0134 .0031 .0010 .0004	-0.0965 0954 0695 0432
ઙ	8-	0.5 .75 1.0 1.25 1.5	-0.0175 0251 0313 0367 0422	0.2088 .2689 .3003 .3165	0.1308 .1234 .1179 .1145 .1145	0.6439 .7692 .8491 .8984 .9293	-0.4493 3463 2451 1727 1244	-0.0804 0231 0026 0014 0026	0.0851 .0800 .0770 .0771 .0751	0.0214 .0206 .0204 .0203	-0.0270 0265 0251 0240	0.0508 .0436 .0351 .0275	0.0068 .0035 .0019 .0012	-0.0190 0207 0191 0162
8	0	0.5 .75 1.0 1.25 1.5	-0.0542 0557 0560 0551	0.2258 .2656 .2920 .3061	0.1118 1.00 1.090 1.090 1.067	0.5550 .6866 .7693 .8e57 .8e57	-0.4751 4432 5731 2988	-0.1224 0806 0447 0261	0.0758 .0740 .0730 .0726	0.0224 .0214 .0209 .0208	-0.0206 0213 0215 0215	00000	00000	00000
021	ž	0.5 .75 1.0 1.25 1.5	-0.1000 0873 0781 0720	0.3043 .3135 .3232 .3281 .3281	0.1235 .1213 .1201 .1201 .1189	0.6544 .7451 .8103 .8594 .8943	-0.6331 4925 3643 2683 2012	-0.1574 0499 0040 .0072	0.0708 .0701 .0701 .0705	0.0234 .0220 .0213 .0210	-0.0165 0184 0193 0198	-0.0425 0379 0315 0252	-0.0074 0038 0021 0013	0.0135 0.0166 0.0164 0.0122
150	99	0.5 .15 1.0 1.25 1.5	-0.2060 1276 0971 0822 0734	0.5427 .4315 .3858 .3702 .3640	0.1957 .1358 .1212 .1215	1.0782 .9174 .9801 1.0246 1.0344	-1.1159 2755 .0155 .0889	-0.1266 .3314 .2088 .0928 .0447	4790.0 .0680. .0684. .0688 .0688	0.0252 .0220 .0212 .0207	-0.0106 0168 0185 0191	-0.1239 1076 0749 0503	-0.0175 0062 0010 0010	0.0353 .0610 .0511 .0357 .0240
Single]	Single profile*	8	-0.0538	0.3472	0.1153	1	0	٥	0.0713	0.020t	-0.0213	0	0	0

*Calculated with the complete kinematic flow conditions, equations (6) and (7); compare table 4, case b.

TABLE 10

THEORETICALLY DETERMINED FLOW ANGLES AND LIFT COEFFICIENTS FOR THE

CASCADES COMPARED WITH MEASUREMENTS IN FIGURES 99 to 112

cA	
Lift coefficient, c	0.541 .917 .268 1.268 1.048 .588 .990 .911 .916
Outflow angle, β_2 , deg	48.2 49.9 51.4 52.1 53.5 111.2 113.3 113.6 114.0
Inflow angle, β_1 , deg	75 65 75 85 75 130 130 130 130 130
Angle-of- attack coefficient, $K = \tan \alpha_{\infty}$	
Angle of attack, α _l , deg	15 15 15 10 10 10
Pitch ratio, t/1	0.5 1.0 1.0 1.25 1.0 1.0 1.55
Blade angle, βs, deg	&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&
Figure	105 106 106 106 106 107 108 108 109 109 109 109 109 109 109 109 109 109

•••••

TARE 11

COMPILATION OF THE QUANTITIES REQUIRED FOR SETTING UP-THE SYSTEMS OF EQUATIONS, EQUATIONS (72) AND (73), FOR THE COEFFICIENTS OF THE SINGULARITY DISTRIBUTIONS (CONTINUED IN TABLE 12)

Calculation example: NACA 8410 blade profile, pitch ratio $\frac{1}{l}$ = 0.75, blade angle β_B = 90° + λ = 120°

17			f_{QO}	-0.514	-0.459	-0.204
16			$8\gamma_2 = f_{q2} 8\gamma_3 = f_{q3}$	-0.0505 -0.514	0.0198 -0.459	0.0616 -0.204
15			872 = fg2	-0.218	1.070 -0.625 -0.083 -0.262	0.2016 -0.334 -0.926 -0.361 -0.154
7.7		pendix	βγl	0.239	-0.083	-0.361
1.3		from "c	870	2.393 -0.036 0.239	-0.625	-0.926
ZI		ctions les" in	هُون	2.393	1.070	-0.334
ıπ		Downwash functions from "cascade downwash tables" in the appendix	f73 = -893	-1.000	0.4786	0.2016
10		Q B	fiz = -842 fiz = -843	-0.695	-1.132	0.203
6			fjı	169.0	-0.254	-1.155
8			f.90	169°0 666°0-	-1.537 -0.234	-1.977 -1.155
7	Profile geometry (compare table 5)	Tangential slope of the thickness distribution	y'αν	0.0156	-0.0635	-0.1024
9	Profile (compare	Tangential slope of the mean camber line	y'sv	0.150	-0.105	-0.201
5		Fixed values according to equation (67)		. 0	-0.8765	0.9827
4				0.8660	-0.3287	-0.9213
3		Fix account	ĝ	0	-1.1269	-0.80to
a	Relative	coordinate of the control point	λ/ _χ ²	0.250 = 3	0.583 = 1 -1.1269 -0.3287 -0.8765	0.917 = 11 -0.8040 -0.9213 0.9
1		Number c of control point	>	1	C)	3

continuation of the calculation example of table 11: calculation of the coefficients $P_{\rm Ol}$ to $s_{\rm 23}$ for the systems of equations,

EQUATIONS (72) AND (73), FROM THE VALUES OF TABLE 11

In the explanation of the direction for the calculation, the columns named in Arabic numbers refer to table 11, those named in Roman numbers to table 12

		, 								
	ΛΤΧ	R ₀ v rding (69) column 16 plus column XI, R ₃ v	-0.2005	0305	.0211	XXVIII	Sov ding 69) from column XXV, S2v	4€00.0-	9910.	.0158
	IIIX	Coefficients Roy to Ry according to equation (69) umn column column column column x,	-0.3223	1425	1948	IIVXX	Coefficients So, to S ₂ , according to equation (69) cm from from column column XXXIV, XXIV, XX	0.0037	.0053	0750.
	IIX	Coeff to F to e column 17 minus column IX,	-0.8730	99₩€	271	IAXX	Coeff to S to e from column XXIII, Sov	9000.0-	7650.	8460.
	х	column 11, -y', g*	-0.1500	0503	0405	XXX	umn 7 column 15, y' 8y2	-0.0034	9910.	.01.58
	×	Product of column 6 and column 10, 110, 110, 84, 842 -ys', 842 -ys',	-0.1043	.1195	80to	XXXIV	Product of column 7 and and column 7 ', 14, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15	0.0057	.0053	.0370
	ΙΧ	Produ column 12, ysv 8q2	0.3590	1124	.0671	IIIX	Production 13,	9000*0-	7650.	84/60.
	VIII	Pov rding (68) column 10 minus column V,	-0.6623	-1.1655	.1720	IIXX	do, ording (68) column column column XIX, dy,	-0.0156	6906*-	1396:
(VII	Coefficients Pov to P2v according to equation (68) mn column column nus 9 minus 10 m rolumn column v IV, V	0.6611	2427	-1.2276	DXX	Coefficients $Q_{0\nu}$ to $Q_{3\nu}$ according to equation (68) mn column column t plus 5 pl column column XVIII, XIII,	0.8552	2564	15.4g.−
	VI	colu 8 m1 colu III	-0.9936	-1.6026	-2.1631	×	Coef to to column 3 minus column XVII,	-0.0373	-1.0590	8382
	Λ	column 15, 15, ysv 8,2	-0.0327	.0275	.0310	¥	Product of column 7 and umn column 2, 10, 11, 11, 11, 8, 8, 8, 2, -y'_1, 8, 8, 8, 2, -y'_1, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,	9⊈10*0-	40€0	0206
	N .	Product of column 6 and column 3, 14, 15, 8, 8, 8, 8, $\frac{1}{8}$	0.0359	.0087	.0726	XVIII		-0.0108	.0723	0208
	III	col l	+200.0-	.0656	.1861	XVII	Produ column 12, y', eqo	0.0373	6290	.0342
	ш	Relative coordinate of the control point, $\frac{x_{\nu}}{l}$	0.250	.583	.917	IAX	Relative coordinate of the control point, $\frac{x_y}{2}$	0.250	.538	.917
	Ι	Number of the control point,	1	2	٤	ΛX	Number of the control point,	н	æ	5

THE TWO SYSTEMS OF EQUATIONS FOR THE COEFFICIENTS OF THE CIRCULATION DISTRIBUTION AND OF THE SOURCE

AND (73), RESPECTIVELY

DISTRIBUTION, ACCORDING TO EQUATIONS (72)

Calculation example: NACA 8410 blade profile, pitch ratio $\frac{\mathbf{t}}{l}=0.75$, blade angle $\beta_S=120^O$

	-0.9936 A_{00} + 0.6611 A_{10} - 0.6623 A_{20} = 0.150 + 0.8730 B_{00} + 0.3223 B_{20} + 0.2005 B_{30} -1.6026 A_{00} - 0.2427 A_{10} - 1.1655 A_{20} = -0.105 + 0.3466 B_{00} + 0.1425 B_{20} + 0.0305 B_{30} -2.1631 A_{00} - 1.2276 A_{10} + 0.1720 A_{20} = -0.201 + 0.2711 B_{00} + 0.1948 B_{20} - 0.0211 B_{30}
rtra syst	-0.0373 B_{00} + 0.8552 B_{20} - 0.0156 B_{30} = 0.0156 - 0.0006 A_{00} + 0.0037 A_{10} - 0.0034 A_{20} -1.0590 B_{00} - 0.2564 B_{20} - 0.9069 B_{30} = -0.0635 + 0.0397 A_{00} + 0.0053 A_{10} + 0.0158 A_{20} -0.8382 B_{00} - 0.9421 B_{20} + 0.9621 B_{30} = -0.1024 + 0.0948 A_{00} + 0.0370 A_{10} + 0.0158 A_{20}
ond mət	-0.9956 A_{OB} + 0.6611 $A_{1\beta}$ - 0.6623 $A_{2\beta}$ = -1.0 + 0.8730 B_{OB} + 0.5223 $B_{2\beta}$ + 0.2005 $B_{3\beta}$ -1.6026 A_{OB} - 0.2427 $A_{1\beta}$ - 1.1655 $A_{2\beta}$ = -1.0 + 0.3466 B_{OB} + 0.1425 $B_{2\beta}$ + 0.0305 $B_{3\beta}$ -2.1631 A_{OB} - 1.2276 $A_{1\beta}$ + 0.1720 $A_{2\beta}$ = -1.0 + 0.2711 B_{OB} + 0.1948 $B_{2\beta}$ - 0.0211 $B_{3\beta}$
o∌2 aγa	-0.0373 $B_{0\beta}$ + 0.8552 $B_{2\beta}$ - 0.0156 $B_{3\beta}$ = -0.0006 $A_{0\beta}$ + 0.0037 $A_{1\beta}$ - 0.0034 $A_{2\beta}$ -1.0590 $B_{0\beta}$ - 0.2564 $B_{2\beta}$ - 0.9069 $B_{3\beta}$ = +0.03948 $A_{0\beta}$ + 0.0053 $A_{1\beta}$ + 0.0158 $A_{2\beta}$ -0.8382 $B_{0\beta}$ - 0.9421 $B_{2\beta}$ + 0.9621 $B_{3\beta}$ = +0.0948 $A_{0\beta}$ + 0.0370 $A_{1\beta}$ + 0.0158 $A_{2\beta}$

TABLE 14

SOLUTION OF THE SYSTEMS OF EQUATIONS OF TABLE 13 BY SUCCESSIVE APPROXIMATION: NACA 8410 BLADE PROFILE, PITCH RATIO $\frac{t}{l}=0.75$, BLADE ANGLE $\beta_S=120^{\circ}$

Coefficient	lst approximation	2nd approximation	3rd approximation
A ₀₀	-0.0455	-0.0885	-0.0873
A ₁₀	. 2578	.3169	.3153
A ₂₀	.0989	.1219	.1213
B _{OO}	0.0735	0.0702	0.0701
B ₂₀	.0211	.0220	.0220
B ₃₀	0218	.0184	0184
A _{OB}	0.7232	0.7429	0.7431
A _{lβ}	4652	4921	4925
A _{2β}	0395	0498	0499
ВОВ	-0.0374	-0.0379	-0.0379
Β _{2β}	0037	0038	0038
B _{3β}	0.0165	0.0166	0.0166

AERODYNAMIC COEFFICIENTS OF THE PUMPING CASCADE OF BLADES WITH

NACA 8410 PROFILES, THE PITCH RATIO $\frac{t}{l}$ = 0.75, AND THE BLADE ANGLE $\beta_{\rm B}$ = 120° (λ = 50°)

Velocity ratio, W2, according to equation (87)	0.863	.822	.753	.709	899.	.626	.587
Velocity ratio, $\frac{W_2}{U_{\infty}}$ according to equations (87) and (89)	4€6.0	606.	.882	.861	.841	.819	.798
Pressure P2 - P1	0.392	.613	.885	1.150	九十.1	1.819	2.239
inft coefficient, c _A , according to equa- tion (81)	टक्ष 0	.597	.750	.870	186.	1.103	1.214
Outflow angle, a2, according to equation (82), deg	-7.8	-7.8	7.7-	9.1-	-7.5	4.7-	-7.3
Angle of Outflow attack, α_1 , angle, α_2 , according according to equation (82), tion (82), deg	8.9	7.11	15.8	19.0	21.9	7.42	27.2
Outflow angle, \$2, according to equations (84) and (86), deg	2.211	112.2	112.3	112.4	112.5	112.6	7.511
Inflow angle, \$1, according to equations (85) and (86), deg	126.8	131.4	135.8	139.0	141.9	7.441	2,741
Angle of attack, βω, attack, according αω, to equade tion (85), deg deg	120.0	122.9	125.7	128.0	130.2	132.4	134.6
Angle of attack, \(\alpha_{\infty}\) deg	0	2.9	5.7	8.0	10.2	4.51	34.6
Angle-of- attack coefficient, K = tan a	0	0.05	01.		.18	.22	.26

TABLE 16

DOWNWASH TABLE FOR THE SINGLE AIRFOIL (ANGLE FUNCTIONS

IN EQUATIONS (20) TO (23) FOR PITCH RATIO $\frac{t}{l} = \infty$

AND ARBITRARY BLADE ANGLES $\beta_{\mathbf{B}}$)

(A) Angle Functions

р	
cot T - 2 sin	8000 1.8000 9522 0.9522 1.747 1.1
1 + 2 cos φ	6667 - 4008040080400 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
တွေ ဗေသ	1.000 216 352 728 936 944 568 568 568 568 266 216 22
cos Sop	1.00 88.1.1.00 88.1.1.00 88.1.1.00 88.1.1.00 88.1.1.00 1.00
ထံ ဗဝ၁	0.1 0.0 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.1
sin 3φ	9764 .9764 .6856 .6856 .3520 .3520 .6105 .9552 .9552 .9556 .9556 .9764 .9764
sin 2φ	
sin φ	0.14559 .9000 .9165 .9165 .9739 .9739 .9739 .9739 .9739 .9739 .9739 .9750 .9860
cot 2	4, 3589 3,0000 2,3805 2,0000 1,7320 1,5275 1,1057 1,1055 1,1057 1,1055 1,1055 1,1055 1,1050 1
X .	° ¿་;;५५;५५;५५;५५;५५;५५;५५;५५;५५;५५;५५;५५;५

CASCADE DOWNWASH TABLES FOR BLADE ANGLES OF $\beta_B = 90^{\rm o}$ To $165^{\rm o}$

(corresponding to stagger angles of λ = 0° to 75°)

AND PITCH RATIO OF $\frac{t}{l} = 2 \text{ TO } 0.5$

	1	8 g	060		00 = V			t/1 = 1	5.	
1038,70	\sim \sim \sim	$^{10^3}\mathrm{g}_{\gamma 1}$	10 ³ g ₇₂	$^{10^3\mathrm{g}_{\gamma5}}$	10 ³ r,0	$10^3 r_{\gamma 1}$	10 ³ f ₇₂	$^{10^3}r_{\gamma 5}$	10 ³ g _{q0}	10 ³ £ ₉₀
00		00	00	00			.Ľ-		100	00
0		00	0	0			-76		7,7	00
00		00	00	00	65.5	10.7.0	-78.6	2 -0	168.5	00
0		0	0	0			8		1 KJ	0
0 0		0 0	0 0	0 0			į į		₹ ¥	00
0		0	0	0			įέ		74	0
0	_	0	0	0			B		₹	0
0 0		0 0	00	0 0	173		8		201	0 (
0		00	0	0		7.7.			ન.હ	00
0		0	0	0	8				2,7	0
0	-	0	0	0					્ભ્ર	0
0		0	0	0					8	0
0 (_	0 (0	0		Ŀ			÷.	0
5 C		> c	> c	0 0	<u> </u>	117.	وٰہ		Q L	0 (
, c) C	o c	0 0	125.7	٠i٠			$\mathcal{D} \in$	5 C
	-	0	0	0	5.5	-162.5		- 00 - 17	2 01	0
0		0	0	0	T: †	P#.7	-82.2	-5.2	173.5	0
0		0	0	0	-226.3	-28.5	-85.6	1.8	169.3	0
0		0	0	0	-418.0	-137.5	-75.8	7.6	145.0	0

	10 ² f 20	000000000000000000000000000000000000000
2.0	10 ³ g _q o	\$28,88,800000000000000000000000000000000
t/l = 2.	10 ³ t	
	10 ³ £ 72	44444444444444444444444444444444444444
	10^3 f $^{\gamma_1}$	88 1 8 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9
00 = V	10 ³ f 70	94.8 78.9 78.9 78.9 78.9 18.9 18.9 18.9 19.9
	10 ³ g ₇₃	000000000000000000000000000000000000000
90 ₀	$^{10^3}\!g_{\gamma^2}$	000000000000000000000000000000000000000
β ₈ = 9	$^{10^3}\mathrm{g}_{\gamma 1}$	000000000000000000000000000000000000000
	10 ³ g _{y0}	000000000000000000000000000000000000000
	<u>2</u>	्रान्त्रविष्ट्रम्हर्ग्यः । १९०० विष्ट्रम्

CASCADE DOWNWASH TABLES FOR BLADE ANGLES OF $\beta_{B} = 90^{\rm o}$ to $165^{\rm o}$

(corresponding to stagger angles of λ = 0° to 75°)

A

0.5
8
Ø
u
44
g
RATTO
PITCH

	10 ² f _{q0}	0 (00	0	 0	00	00	. 0	0	0	0	0	0	0	0 1	0	0	0	0	0	0	o	0
0	10 ³ 8 ₉₀	314	3,5	355	<u>\$</u>	372	278 378	377	374	268	360	22	338	, 22,	200	8	275	χ.	돐	225	372	354	252
t/l = 1.0	10 ³ f 73	-26.3	0.4 0.0	-23.5	-ਬ.7	-19.5	-12.3	18.	₹. †	۰.	≠ .	ສຸ	12.3	16.0	19.5		5.	₫ 6.0	ξ, 8.	26.3	-19.5	7.2	25.2
*	10 ³ f y2	-155	-142	-157	-164	-170	-181	181-	-186	-187	86	 ₹.	평'	-176	227	105	-157	<u>و۲</u> .	-145	-133	-170	-185	-147
	10^3 F $_{\gamma 1}$	332	<u> </u>	250	_ ਹ	182	110	7	37	0	-57	#.	-170	-146	-182	_ ਹ-	اري د	92 -	-307	-332	182	ъ <u>-</u>	-289
00 = 4	$10^3 g_{\gamma 2} 10^3 g_{\gamma 3} 10^3 \epsilon_{\gamma 0} 10^3 \epsilon_{\gamma 1} 10^3 \epsilon_{\gamma 2} 10^3 \epsilon_{\gamma 3} 10^3 \epsilon_{q 0} 10^3 \epsilon_{q 0}$	350	್ಣ 2007 2007	145	2	φ.	1,58	627	-3 80	-368	オキ	861-	-558	-616	-672	-727	-775	<u>ب</u>	-855	8	89	9L 1 r-	-830
	10 ³ g ₇₃	0.	00	0	0	0 (0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
906	10 ³ 8 ₇₂	0.	00	0	0	0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8 8 E		0	00	0	0	0 (0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	•	0
	10 ³ g ₇₀ 10 ³ g ₇₁	0	00	. 0	0	0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Ģ
	×I⊷	0	٤٠	15	લ.	3	v, k)- 1	.45	بر.	.55	9.	.65		.75	φ.	٠ ئ	٠.	.95	1.0	212	건감	ជាះ
	10 ² r _{g0}	0	0 0	0	0	0	0 0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1.25	10 ³ g ₉₀	216.1	20.00 0.00 0.00	236.2	240.8	244.3	2,7.7	2.2	2,16.2	243.7	240.5	236.6	231.0	7.42	216.9	209.3	201.0	193.1	184.6	175.6	244.3	238.0	189.4
t/l = 1.	10 ³ f ₇₃ 10 ³ g ₉₀	1.41-	-13.4	11.5	-10.3	-8.9	-7.7 7.7) k	- 6-17	0	1.9	3.7	5.5	7.3	8.9	10.3	11.5	12.6	13.4	14.1	-8.9	3.1	12.9
*	72	2.5		7 07			K K			ω.											1.7	0:	3.0

	×I~	0 · · · · · · · · · · · · · · · · · ·
	10 ³ r _{q0}	000000000000000000000000000000000000000
1.25	10 ³ e ₉₀	226 226 226 226 226 226 226 226 226 226
t/l = 1.	10 ³ £ ₇₃	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
1	10 ³ f ₇₂	26-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1
	10 ³ £ ₇₁	202 202 202 202 203 203 203 203 203 203
λ = 0 ⁰	10 ³ £ 70	1833. 1873. 18
	1038,73	000000000000000000000000000000000000000
906	10 ³ 8 ₇ 2	000000000000000000000000000000000000000
β. = . 9.	10 ³ g ₇₁	000000000000000000000000000000000000000
	10 ³ g _{y0}	000000000000000000000000000000000000000
	MI~	ैठ्यस्वर्थरुष्ट्रक्र्यस्वरूष्ट्रब्ध्रम्

CASCADE DOWNWASH TABLES FOR HIADE ANGLES OF $~\beta_{\rm B} = 90^{\rm o}$ to $165^{\rm o}$

(corresponding to stagger angles of $~\lambda = 0^{\rm o}$ to $75^{\rm o})$

	10 ³ fg0	000000000000000000000000000000000000000
<u>ر</u>	10 ⁵ gg0	830 938 11,033 11,117 11,1186 11,1286 11,286 11,286 11,286 11,040 11
t/l = 0.5	10 ³ f y3	115.0 1-126.8 1-141.0 1-141.0 1-141.0 1-15.0
΄	10 ³ f 72	-288 -328 -328 -328 -536 -531 -531 -531 -531 -531 -531 -531 -531
	10 ³ f ₇₁	968 932 932 175 175 175 117 117 117 117 117
) = 0 ₀	10 ³ f 70	1,106 636 636 636 637 786 638 638 638 638 638 638 638 638 638 6
	10 ³ 8 ₇ 3	000000000000000000000000000000000000000
°06	103872	000000000000000000000000000000000000000
β. Θ. = Ω	10 ³ 8 ₇₁	000000000000000000000000000000000000000
	1038,00	000000000000000000000000000000000000000
	×1~	้อู่ น่ามู่ ผู้ ผู้ หัว หัว หัว หัว หัว หรือ หรือ หัว หาว นาว นาว
	1 0	

	10 ³ £q0	000000000000000000000000000000000000000	,
	10 ³ &q0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3
= 0.75	10 ³ f ₇₃	%44484448864110112888448884 8 4 4 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	<u>}</u>
t/1	10 ³ fy2	1189 252 266 276 276 276 276 276 276 27	-210
	$10^3 f_{\gamma 1}$		7.
00 =	10 ⁵ £70	472 375 283 283 284 285 495 496 406 406 406 406 406 406 406 406 406 40	-1,2(1
~	10 ³ 873	000000000000000000000000000000000000000	0
	103872	000000000000000000000000000000000000000	•
β ₈₌ 90°	10 ³ 8 ₇₁	000000000000000000000000000000000000000	0
	103870	000000000000000000000000000000000000000	0
	xl~	्रेप्तं वृष्ट्रेप्ट्रेप्ट्रेल्ड्रेप्ट्रेब्ड्रेट्ड्रेसय प्राप्त ।	리임

CASCADE DOWNWASH TARKES FOR BLADE ANGLES OF $\,\beta_B = 90^{\rm o}$ to $165^{\rm o}$

(corresponding to stagger angles of $\lambda = 0^{\circ}$ to 75°)

	10 ³ f _{q0}	上午上午收费 2 2 2 3 </th
= 1.5	103890 1	24.00.00.00.00.00.00.00.00.00.00.00.00.00
t/1	10 ³ £ ₇ 3	אַלּעִילִּלְאַעְּמִילִין וֹס יִיִּיִמִּעִּאִיִּאִנְּתִּסְהַ עֵּיׁ יִי עִּ הַסְּעִּהְסִׁמְהַ בְּיִּלְּטְהַמְּסִׁהְּעָסְהַ מִּ מִּ יִּי
	10 ³ t 72	888 5 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
. 150	10 ³ £ ₇₁	34811919191919191919191919191919191919191
* ~	10 ³ f ₇₀ 10 ³ f ₇₁	\$100 \$200 \$200 \$200 \$200 \$200 \$200 \$200
	10 ³ 8 ₇₃	ด้นั้น44 ผู้ผู้ผู้นำเอ นุตุดพรรมบุญดู ผู้ นุ นั้นรับขั้งขังขังขัง ฉับขังขังขังรับจำรับ เด้ เด้
1050	10 ³ g ₇₂ 10 ³ g ₇₃	88 4 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
B _B	10 ³ 8 ₇₁	₹£800₹34458008,144₹4486£ ₹ ₹ ₹ ₹ ₹ ₹ ₹ ₹ ₹ ₹ ₹ ₹ ₹ ₹ ₹ ₹ ₹ ₹ ₹
	1038,0	73.1. 73.1. 73.1. 73.5. 73
	MK-	्रुनं मुज्युर्थ हुन कुर्य हुन स्था । इन मुज्युर्थ हुन कुर्य हुन स्थाप ।
	10 ³ f ₄₀	44444444444444444444444444444444444444

	10 ³ f.00	444444444444444444444444444444444444444
2.0	10 ³ 6 ₉₀	ಕ್ಷಳಾ೫೫೭೭೭೭೭೭೭೭೭೫೫೪೪೪೪೪೫೪೪ ೬ ೮ ದ ಗರ್ಬಕ್ಷಗಳುಲ್ಲಿಲ್ಲಿಲ್ಲಿಕ್ಟ್ರಾಗಿತ್ತ ಈ ಗ
t/1 =	10 ³ f ₇ 3	ช่องน่าน่านา
	10 ³ r,2	444444444444444444444444444444444444444
150	$10^3 t_{\gamma 1}$	\$\\\ \alpha \\ \
۱ = 1	10 ³ t 70	88.44.45.65.65.65.65.65.65.65.65.65.65.65.65.65
	103873	מממין ווין מממין מ היהיוטיר איומים מימ מיואריטיו הייל מ
1050	103872	४४५४४४४४४४४४४४४४४४४४४४४४४४४४४४४४४४४४४
βg = 1	103871	7.17.78.88.89.40.40.41.60.88.89.75.7.7.4.4.89.89.89.40.40.40.89.75.7.7.89.89.89.89.89.89.89.89.89.89.89.89.89.
	ο/9ζοτ	7. 7. 8. 8. 8. 7. 8. 7. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8.
	чк	ूर्य संबंध के क्रिक्ट के क्रिक्ट के कि

CASCADE DOWNWASH TABLES FOR BLADE ANGLES OF $\beta_B = 90^{\circ}$ to 165° (CORRESPONDING TO STAGGER ANGLES OF λ = 0° TO 75°)

0.5
밁
ď
اا معاجد
g
RATIO
PITCH
AM

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			6	+ 1	010	_	<u></u>		~	<u> </u>	410			٠.	<u> </u>	~~		+		<u>~</u>		ΔΙ
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		10 ³ f _q (6.721-	4.951-	-149.6	-166.1	-172.	-178.2	-177.7	-175.0	-163.6	-155.6	-146.c	-135.6	-124.t	101.	4.8			-172.3	-156.4	87.2
$ b_{8} = 105^{\circ} $		10 ³ &q0	289.9	301.0	319.6	326.8	332.4	357.5	338.2	336.6	327.0	320.2	311.8	205	2,00,00	265.6	252.5	239.3	מליט	332.4	321.8	247.6
$b_{8} = 105^{\circ} \qquad \lambda = 15^{\circ} \qquad t/t = 1.25$ $10^{\circ}8_{71} 10^{\circ}8_{72} 10^{\circ$		10 ³ £ ₇ 3	-21.6	-20.5	-19.2	-15.4	-13.1	8.5	5.5	ο. Θ. α	, 0 0	, v	8.5	10.8	1,4	17:1	19.5	8 6	2.17	-13.1	4.6	19.1
$b_{8} = 105^{\circ} \qquad \lambda = 15^{\circ} \qquad t/t = 1.25$ $10^{\circ}8_{71} 10^{\circ}8_{72} 10^{\circ$		10 ³ £ ₇₂	1.921-	-133.4	159.6	-150.8	1555.4	162.4	-164.7	-166.1	-Tee.b	164.7	-162.4	159.4	٠ ٠ ٠	145.5	-139.6	133.4	1.021	-155.4	-165.2	-137.4
$b_{8} = 105^{\circ} \qquad \lambda = 15^{\circ} \qquad t/t = 1.25$ $10^{\circ}8_{71} 10^{\circ}8_{72} 10^{\circ$		10 ³ f ₇ 1	303.5	277.3	220.0	192.0	161.5	98.2	65.8	33.0	-33.0	-65.8	-98.2		7 6	-221.4		_	_			-259.2
$ b_{8} = 105^{\circ} $		1032,70	517.1	253.6	16.69 6.63 6.63	57.2	4.67	1111	-506.6	-270-6	-393.0	451.8	-508.2				-752.5	93.9		4.6-	432.0	-766.0
$ b_{8} = 105^{\circ} $		103875	-17.3	-17.5	-17.5	-15.4	-13.7		-6.3	<u>د.</u> د.	n C	6.3	9.1	7.11			17.3			-13.7	7.4	17.1
$ b_{8} = 105^{\circ} $	1050	10 ³ g ₇₂	-47.1	-53.1	2,4 1.0	4.07-	-75.5	. 185 . 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	 	6.79	8 6 7 6	-86.3	-83.5	-79.9	 	6.49	-59.1	-53.1	1:	-75.5	-86.9	-57.0
$ b_{8} = 105^{\circ} $		10 ³ g ₇ 1	142.7	132.4	108.6	95.2	8.4) R	33.6	16.9	-16.9	-33.6	5.0	65.8	9 9 9 9	108.6	-121.0	132.4	1.241-	8.0	-28.3	-124.9
$ b_{8} = 105^{\circ} $		10 ³ g ₇₀	157.5	125.4	84.85 4.00	24.3	10.7	-78.2	-110.5	-141.2	1.07.1-	-222.8	-246.0	-267-2	4.00	519.0	-332.4	_	2	-10.5	-213.0	-557.0
$ b_{8} = 105^{\circ} $				දි.	1.	'n	gi k	ij			ٽ ڀڙ	10	<u>8</u>	<u>-</u>	Ç«	8	٥.		_	시김	니워	
$ b_{\mathbf{g}} = 105^{\circ} $		·					_									_			•			
$ b_{\mathbf{g}} = 105^{\circ} $		2	0	6,	ورية	Ī,	Ď-	10	н,	٦,	<u> </u>	Ŋ	≠	Q.	N C	1 1-	0	<u> </u>	4	ıζ.	ન_	9
$ b_8 = 105^{\circ} $		103rq	ず	8	99	-113	977	ij	1-119.	-13 21:4:4:4:4:4:4:4:4:4:4:4:4:4:4:4:4:4:4:4		-109	•						į			
$ b_{8} = 105^{\circ} $	1.25	10 ³ eqo						8	220.8	220	210.7	213.6				183		175.1	•	217.9	13.8	178.8
$ 8_8 = 105^{\circ} $	= 1/	12																				
$10^{3} g_{y0} = 105^{9} \qquad \lambda = 15^{9}$ $10^{3} g_{y0} = 10^{3} g_{y1} = 10^{3} g_{y2} = 10^{3} g_{y3} = 10^{3$	t)	10 ³ £,																	•			
$10^{3}g_{\gamma 0} 10^{3}g_{\gamma 1} 10^{3}g_{\gamma 2} 10^{3}g_{\gamma 3} 10^{3}f_{\gamma 0}$ $108.8 101.1 -38.0 -10.1 210.7 64.4 94.8 +11.3 -9.8 168.7 64.4 94.8 +11.3 -9.8 168.7 64.4 94.8 -9.7 94.8 -9.7 94.8 -9.7 94.8 -9.7 94.8 -9.7 94.8 -9.7 94.8 -9.7 -9.7 -9$	t,	10 ³ £ ₇₂ 10 ³ £ ₇	4.06-	-93.6	8 8.	101.7	103.8	106.8	7.701.	108.3	108.3	107.7	106.8	105.1	0.101	-96.2	9.6	9. 9.			2.1	8.6
10^{3} gy	a	10 ³ £ ₇₁ 10 ³ £ ₇₂ 10 ³ £ ₇	4.06- 7.40S	186.2 -93.6	167.1 -96.6	127.4 -101.7	106.9 -103.8	64.8 -106.8	45.5 -107.7	21.7 -108.3	-21.7 -108.3	43.3 -107.7	-64.8 -106.8	-86.0 -105.4	-100-9 -105-0	147.6 -99.3	-167.1 -96.6	-186.2 -93.6	+: : +:	-103.8	-108.0 2.1	-173.6 -95.7 9.8
103e ₇₀ 103e ₇₁ 103e ₇₂ 103	= 150	10 ³ £ ₇₀ 10 ³ £ ₇₁ 10 ³ £ ₇₂ 10 ³ £,	4.06- 7.40s 7.01s	168.7 186.2 -93.6	82.9 167.1 -96.6 82.9 147.6 -99.3	39.3 127.4 -101.7	17 7 86 0 -103.8	-91.3 64.8 -106.8	134.2 43.3 -107.7	-176.6 21.7 -108.3	-216.0 -21.7 -108.3	-300.2 43.3 -107.7	-339.5 -64.8 -106.8	-377.5 -86.0 -105.4	414.01-106.91-103.8	183.6 - 147.6 - 99.3	-516.3 -167.1 -96.6	-547.5 -186.2 -93.6	+: : +:	.1 106.9 -105.8	-286.0 -36.1 -108.0 2.1	-526.0 -173.6 -95.7 9.8
1038.0 1038.1 108.8 101.4 68.9 93.4 68.9 93.4 68.9 93.4 68.9 93.4 68.9 93.4 68.9 101.5 103.6 103	= 150	10 ³ 8 ₇₃ 10 ³ £ ₇₀ 10 ³ £ ₇₁ 10 ³ £ ₇₂ 10 ³ £.	10.1 210.7 204.7 -90.4	-9.8 168.7 186.2 -93.6	-9.5 125.9 167.1 -96.6 -8.7 82.9 147.6 -99.3	-7.8 39.3 127.4 -101.7	-6.8 -4.1 106.9 -105.8	4.4 -91.3 64.8 -106.8	-2.9 -134.2 43.3 -107.7	-1.5 -176.6 21.7 -108.3	1.5 -26.0 -21.7 -108.3	2.9 -300.2 43.3 -107.7	4.4 -339.5 -64.8 -106.8	5.6 -377.5 -86.0 -105.4	7 8 110 4 127 1 101 7	8.7 -483.6 -147.6 -99.3	9.3 -516.3 -167.1 -96.6	-547.5 -186.2 -93.6	+:06- :-toy- 6:01/-	4.1 106.9 -103.8	-286.0 -36.1 -108.0 2.1	-526.0 -173.6 -95.7 9.8
6 80 80 80 80 80 80 80 80 80 80 80 80 80	λ = 150	$10^3 g_{\gamma 2} \left[10^3 g_{\gamma 2} \right] 10^3 t_{\gamma 0} \left[10^3 t_{\gamma 1} \right] 10^3 t_{\gamma 2} \left[10^3 t_{\gamma} \right]$	10.1 210.7 204.7 -90.4	-9.8 168.7 186.2 -93.6	-9.5 125.9 167.1 -96.6 -8.7 82.9 147.6 -99.3	-7.8 39.3 127.4 -101.7	-6.8 -4.1 106.9 -105.8	4.4 -91.3 64.8 -106.8	-2.9 -134.2 43.3 -107.7	-1.5 -176.6 21.7 -108.3	1.5 -26.0 -21.7 -108.3	2.9 -300.2 43.3 -107.7	4.4 -339.5 -64.8 -106.8	5.6 -377.5 -86.0 -105.4	7 8 110 4 127 1 101 7	8.7 -483.6 -147.6 -99.3	9.3 -516.3 -167.1 -96.6	9.8 -547.5 -186.2 -93.6	+-nc- no- 6-n/c- 1-m	-6.8 -4.1 106.9 -103.8	2.6 -286.0 -36.1 -108.0 2.1	43.5 9.6 -526.0 -173.6 -95.7 9.8
	$= 105^{\circ}$ $\lambda = 15^{\circ}$	$10^3 g_{\gamma 1} \left[10^3 g_{\gamma 2} \right] 10^3 g_{\gamma 3} \left[10^3 f_{\gamma 0} \right] 10^3 f_{\gamma 1} \left[10^3 f_{\gamma 2} \right] 10^3 f_{\gamma 2}$	101.4 -38.0 -10.1 210.7 204.7 -90.4	93.4 41.3 -9.8 168.7 186.2 -93.6	75.6 -47.6 -8.7 82.9 147.6 -99.3	65.9 -50.4 -7.8 39.3 127.4 -101.7	55.8 -52.9 -6.8 4.1 106.9 -103.8	7.2 -56.8 4.4 -91.3 64.8 -106.8	22.9 -58.0 -2.9 -134.2 43.3 -107.7	11.5 -58.8 -1.5 -176.6 21.7 -108.3	-11.5 -58.8 1.5 -260.0 -21.7 -108.3	-22.9 -58.0 2.9 -300.2 43.3 -107.7	-34.2 -56.8 4.4 -339.5 -64.8 -106.8	-45.1 -55.0 5.6 -377.5 -86.0 -105.4	65 0 50 1 7 8 140 × 127 1 101 7	-75.6 47.6 8.7 483.6 -147.6 -99.3	-84.8 -44.6 9.3 -516.3 -167.1 -96.6	-93.4 -41.5 9.8 -547.5 -186.2 -93.6	+.ve- 1 1 1	-52.9 -6.8 -4.1 106.9 -103.8	-58.2 2.6 -286.0 -36.1 -108.0 2.1	43.5 9.6 -526.0 -173.6 -95.7 9.8
**	$= 105^{\circ}$ $\lambda = 15^{\circ}$	$10^3 g_{\gamma 0} \left[10^3 g_{\gamma 1} \right] 10^3 g_{\gamma 2} \left[10^3 g_{\gamma 3} \right] 10^3 f_{\gamma 0} \left[10^3 f_{\gamma 1} \right] 10^3 f_{\gamma 2} \left[10^3 f_{\gamma 2} \right] $	101.4 -38.0 -10.1 210.7 204.7 -90.4	93.4 41.3 -9.8 168.7 186.2 -93.6	75.6 -47.6 -8.7 82.9 147.6 -99.3	65.9 -50.4 -7.8 39.3 127.4 -101.7	55.8 -52.9 -6.8 4.1 106.9 -103.8	7.2 -56.8 4.4 -91.3 64.8 -106.8	22.9 -58.0 -2.9 -134.2 43.3 -107.7	11.5 -58.8 -1.5 -176.6 21.7 -108.3	-11.5 -58.8 1.5 -260.0 -21.7 -108.3	-22.9 -58.0 2.9 -300.2 43.3 -107.7	-34.2 -56.8 4.4 -339.5 -64.8 -106.8	-45.1 -55.0 5.6 -377.5 -86.0 -105.4	65 0 50 1 7 8 140 × 127 1 101 7	231.9 -75.6 47.6 8.7 483.6 -147.6 -99.3	243.6 -84.8 -44.6 9.3 -516.3 -167.1 -96.6	254.3 -93.4 -41.3 9.8 -547.5 -186.2 -93.6	1.00- 1.40- K.01C- L.O. 10.0C- 1.4.1M- K.COZ	55.8 -52.9 -6.8 -4.1 106.9 -103.8	-19.2 -58.2 2.6 -286.0 -36.1 -108.0 2.1	-87.8 43.5 9.6 -526.0 -173.6 -95.7 9.8

CASCADE DOWNWASH TABLES FOR HIADE ANGLES OF $\,\beta_{\rm B} = 90^{\rm o}$ to 165°

(corresponding to stagger angles of λ = 0° to 75°)

) 		ٔ د	t/1 = 0.75	22				β _B = 10	105°		λ = 15°		1/1	5.0 = 1		
2,2	103873	1038,70	103f71	103f72	10 ³ f ₇₂ 10 ³ f ₇₃ 10 ³ g ₄₀ 10 ³ f ₄₀	10 ³ gg0	$10^3 r_{ m q0}$	xl 2	1038,01	0 103871	10 ³ gy1 10 ³ gy2 10 ³ gy3	103873	1035,00	10 ³ £ ₇ 1	$10^3 f_{\gamma 1} \ 10^3 f_{\gamma 2} \ 10^3 f_{\gamma 3} \ 10^3 g_{QO}$	10^3 f γ_5		10 ³ fq0
			L		1	a to	Q d		0		1	Ş	, 8c0 t	7 7 7	- 18c	1001	790.1	6 696-
2.9	-30.1	527.8 421.3	492.8	-187.8	1,6.1	1,00	457.00 -100.5 484.7 -205.4		2 2 5 5 6	6 357.4	\$ \$ \$ \$		815.9	850.0	-320.5	-116.4	11.	-331.2
9	_		411.5			510.1	-227.7	٠.٬				4.17-	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	778.7	-361.7	-121.1	963.4	-396 5.86.5
9 4			366.4	-250.4	7.17	551.5	-243.1	<u>.</u> ئ ر	20.3	7 200.0	-120.4	-83.5			150.0	-118.5	1,00,1	185.9
7.			569.9	-256.0			-278.2		<u>'^</u>			8.8		523.4	4.584-	-109.7	1,138.1	-515-1
~		-136.6			-27.1	574.4	-286.2	, w	•	178.6	-217.4		-313.2	426.1	-517.8	-95.7	1,165.4	-530.2
٦.			165.5	-275.1		578.9	289	.35	5 -258.7	136.4	-238.9	-65.5 7.5		323.9	2,00	. K	-76.911,175.8	-121-7
رځ ر	-15.6	1,555.5	55.6	281.0	-12.6 -7.6	577.2	-506-	-	4-7-7-1- 15-1-04-5-	2.4.	-265.6	-23.9	-923.8	109.7	-581.7		1,143.2	497.3
/ω			,0	-285.9		200.0	-268.2	, 7.	1 -465.9	0	-268.9	0	9.401,1-			0	1,104.6	-465.9
ċ			-55.6	8.482-		551.2	-252.8	۳,	.55 -520.8	8 46.4	-565.6		23.9 -1,272.0			27.7	1,052.6	-428.c
5		-753.0	- TH-3			530	-234.6	9.	-569.	-569.0 -92.0	-255.2		45.6 -1,426.7	-218.0	-568-4	22.0	2.066	-500
۲.		-835.2	-165.5		21.4	ر ا ا ا	-214.3	.65	-6-15-	1 -136.4	-238.9		-1,26(-1	6.55.	240.0	0 0 0	2,50 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,	
٠.	27.6	-917.4	-218.9		27.1	0.6	172		4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	-0+0,0 -1 (0.0 680 7 018 1	100	. &	8 8 1.00	-523 1	124	7.00	2,0	2,46.5
-1	7:5	25.00	7.00	000	# C #	7 6	27.0	<u>.</u> α		0.054		, K	9,5	615.1		118.3	9.169	203
ن۸	ر د د	7,700,1-	266.1	1.040		30,0	127.0			-735.0 -286.3		7.02	-2,017.7	-700.5		8.121	616.7	-162.4
9.0		1.187.1	11.5	-216.5	8.	, dy	•	,0		8 -314.1	-109.4	77.4	-2,106.2			121.1	7,8,8	-126.6
7.8		-1.240.6		-201.0		23.6	-89-7	<u> </u>	_		9. 4.	61.2	-2,180.3			116.4	8	-95.9
6.7		-1,291.0	492.8			305.4 4.05		1.0	-783.2	2 -356.2	-63.2	20.1	-2,247.6	-913.7	-281.1	109.1	420.2	-70.8
1.1	-31.5	-24.5	269.9	-256.0	-33.4	564.3	-278.2	시의	-78.9	9 218.1	-192.1	-82.8	-91.3	523.4	4.584-	7.601-	-109.7 1,138.1	-515-1
1.1	13.5	-718.0	-93.0	-282.9	2.51	532.0	532.0 -239.8	니라	-552.5		-77.8 -259.3		38.7 -1,372.0	-183.0	-183.0 -574.0	1,6.2	46.2 1,006.0	-396.9
5.3		33.9 -1,025.0 -425.0	-425.0	-211.3	45.8		355.0 -100.8	디워		0 -322.5	-100.6		-2,132.0	-805.0	0.74₹-		522.0	522.0 -116.0
ĸ.		-1,025.0	-425.0	-211.3			<u> </u>	-100.8		기기	기의	기기	11 -761.0 -322.5 -100.6	11 -761.0 -322.5 -100.6	11 -761.0 -322.5 -100.6	12 -761.0 -322.5 -100.6	기기	11 -761.0 -322.5 -100.6 68.3 -2,132.0 -805.0 -347.0 119.9

	10 ³ f _{q0}	-18.5 -205.4 -227.7 -224.8 -278.5 -278.5 -278.5 -278.5 -279.5 -278.5 -170.7 -170.7 -170.7 -170.7 -276.8 -274.5 -170.7 -170.7 -170.7 -276.8
0.75	10 ³ eq0	1,57.8 1,68.7.8 1,01.7.5 571.5 571.5 571.2 572.2 573.3
t/l = 0.	10 ³ £ ₇ 3	4.1.6.4.4.4.4.4.6.4.4.4.4.4.4.4.4.4.4.4.
+	10 ³ f 72	2.501.05 2.501.
	10 ³ £ ₇ 1	269.9 200.5
λ = 15°	10 ⁵ £,00	727.8 421.3 201.5 201.5 80.5 80.5 1.2 28.5 28.5 28.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2
	10 ⁵ 875	5 8 4 4 5 5 5 5 5 6 0 8 5 8 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
1050	10 ³ gy2	7.50 7.50
β8 = 1	10 ⁵ g ₇ 1	82.53 11.44 12.54 12.55 12.55 13.55 13.55 14.55 15
	10 ³ g,0	247 14175 14175 14175 14175 1509 1509 1509 1509 1509 1509 1509 150
	xl∼	ুণন্ত গুড় হ'ব র দেল বার বার

TABLE 17.- Continued

CASCADE DOWNWASH TABLES FOR BLADB ANGLES OF $\beta_{\mathbf{g}} = 90^{O}$ TO 165^{O}

(corresponding to stagger angles of λ = 0° to 75°)

AND PITCH RATIO OF $\frac{t}{l} = 2$ TO 0.5

ı	ا _ا ر	<u> </u>				<u> </u>			
	1 = 1.5	103f y3	٠ ٠ ٠ ٠	1:1 6:1 0	00	0 1 1 1 1 1 a w 4 w	년 0	α i	-:3
	1/1	10 ³ f ₇₂	-50.0 -4-49.1 -4-89.1	4444 447.0	146.9 147.0 147.3	144.7 148.2 149.1 149.1	-50.0 -47.9	0.74-	-49.3
		103r,1	98.0 77.9 68.0 78.0	28.8 4.88.4 1.9.1	28.8 1.9.6 1.8.8	48.7 68.0 1.9 1.9	-98.0 48.2	-16.2	-81.5
	λ = 30°	10 ³ f ₇₀	97.77 7.77 5.77 4.88.4 1.8.9	-19.4 -28.4 -57.6	-96.6 -115.9 -135.8	-1/6.0 -197.9 -239.4 -259.7 -259.7	-301.0	-129.2	-267.0
		10 ³ 8 ₇ 3	4.6.5.6.4.			~ + ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	₹. 1.6	1.2	7.9
	1200	$10^3 g_{\gamma 0} \left 10^3 g_{\gamma 1} \right 10^3 g_{\gamma 2} \left 10^3 g_{\gamma 3} \right 10^3 f_{\gamma 0} \left 10^3 f_{\gamma 1} \right 10^3 f_{\gamma 2} \left 10^3 f_{\gamma 3} \right ^{1}$	-59.4 -62.2 -64.8 -67.1 -69.1	0.44.9 8.47.7 8.67.7 8.67.7	- 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	-71.9 -70.6 -69.1 -64.1 62.2		-73.6	-63.9
	β _B = 12	103871	138.1 126.0 113.3 100.2 86.7	584 256 256 256 256 256 256 256 256 256 256	8.68	-58.7 -72.8 -86.7 -100.2 -113.3	-138.1 72.8	-2 4 .7	-351.7 -117.4
		103870	143.4 114.0 84.9 26.9		-149.7 -177.7 -204.9	286.5 286.5 286.5 24.1.2.4 26.0 36.0 36.0 36.0 36.0 36.0 36.0 36.0 3	-381.6 -2.7	-196.0	-351.7
		7	0. 1. 54.	ۏۘٮؗڹڹۼ	ڹۘ؆ڽٚٷ	؞ڔۻٷٷٷ	1.0 21 21	12	ជាឌ
_									
		10 ³ r ₉₀	8-8-8-6-6-6-6-6-6-6-6-6-6-6-6-6-6-6-6-6	28888 -000	-4 0 0 0 v	-88:1 -88:0 -75:0 -75:0 -75:0	-70.8 -85.7	-84.5	-74.3
	2	10 ³ gq0	54.2 54.2 53.6 53.2			¥¥%%%; a'æ'r'a'è'r	52.4	53.0	57.2
	/1 = 2.0	10 ³ f ₇ 3	o जंजंजंचं	444	0000 i			0	- 5
	1/1	$10^3 g_{\gamma 0} \left[10^3 g_{\gamma 1} \right] 10^3 g_{\gamma 2} \left[10^3 g_{\gamma 3} \right] 10^3 f_{\gamma 0} \left[10^3 f_{\gamma 1} \right] 10^3 f_{\gamma 2} \left[10^3 f_{\gamma 3} \right] 10^3 g_{q0} \left[10^3 f_{q0} \right]$	-27.6 -26.9 -26.6 -26.5	8 5 5 5 5 5 7 6 7 7 7	ប៉ូស៉ូស៉ូស៉ូ ១. ០. ០. ৮. ឆ	248888 2450	-27.6	-25.7	-27.0
	•	10 ³ f _{y1}		28.2 15.7 10.5	5.2 -5.2 -10.5	-26.2 -37.7 -37.1 -37.1	25.4	-8.7	-44-3
) = 30 ₀	1035,70	72.1 41.8 71.6 21.0	-10.2	4.5.5.9. 6.1.5.9.	-96.4 -118.9 -130.4 -142.1	-165.2	4.07-	-145.8 -44.5
		103873	4.6.9.4 4.6.9.9.4 7.9.9	0,911 ·		0.11.0.0.0.4 0.0.0.0.4 0.0.0.0.4	3.4 -1.9	٠.	2.9
	, O	103872	-37.6 -38.6 -39.4 -40.2	4.14- 4.1.8 4.24- 4.24-	44444 0.0.0.0.0 0.0.0.4.0	446666		45.4-	-39.5
	β _B = 120 ⁰	103871	82.2 74.5 66.7 58.7	12.3 24.0 25.5 17.1	8.5 0 -8.5 -17.1	43888 6666	-82.2 -12.3	-112.9 -14.2	-213.1 -69.4 -39.2
		3870	83.9 66.9 50.0 33.0	1.82.42	-68.7 -85.4 101.9 118.2	1,05.2	235.2	112.9	23.1
	1	[4	l		<u> </u>) - F- 0 0 0 0	7 7	<u> </u>	귀음

9888 9889 9889 9899

9.941-

96.8

-116.9

104.0

TABLE 17.- Continued

CASCADE DOWNWASH TABLES FOR BLADE ANGLES OF $\beta_{\rm B}$ = 90° TO 165°

(CORRESPONDING TO STAGGER ANGLES OF $\lambda = 0^{\circ}$ TO 75°)

AND PITCH RATIO OF $\frac{t}{l} = 2$ TO 0.5

	10 ³ f q0	-249	-282 282 282	18.	-314	-323	-323	-213	 	-277	969	2542	-202	-182	-142	-314	-296	-175
	10 ³ g ₉₀	226	148	550	6 7 8	18 18 18 18 18 18 18 18 18 18 18 18 18 1	828	223	55. 55. 55. 55. 55. 56.	228	523	2 8	227	224	र्त्त त	219	526	222
t/l = 1.0	$10^3 r_{\gamma 5}$	-6.0	-1.6	1.1	ຜູ້ເ	i ai	1.9	0	1.1-	-2.3	-2.5	2.5	; ;	1.6	6.0	2.2	-1.7	2.3
t/	10 ³ f y2	-112	111	-112	011-	108	-107	-106	-104	-108	-100	-110	-113	-113	-113	-110	-107	-113
	$10^3 8_{\gamma 0}$ $10^3 8_{\gamma 1}$ $10^3 8_{\gamma 2}$ $10^3 \epsilon_{\gamma 3}$ $10^3 \epsilon_{\gamma 0}$ $10^3 \epsilon_{\gamma 1}$ $10^3 \epsilon_{\gamma 2}$ $10^3 \epsilon_{\gamma 3}$ $10^3 \epsilon_{q 0}$ $10^3 \epsilon_{q 0}$	222	179	132	∄&	38:	\$ ₽	0	34	99-	æ ;	777-	-156	-179	82,24	111	-34	-185
λ = 30°	10 ³ £ 70	218	£;	3.5	ν.	.8-	-132	-223	-2562	,×,	-405	247-	-539	-5,82	6 <u>7</u> 6	ĸ	-298	-592
	$^{10^3}$ g $_{\gamma5}$	-30.6	188.7	-23.4	8,7	12.4	2 4 4 K	· o .	* 8 * 4	15.4	16.4	20.1 7.20		28.3	8.8 6.6	-20.1	7.0	28.7
1200	10^3 g $_{\gamma^2}$	96 -	-117	1,42	241- 841-	-153	-157	170	-159	-153	1.48	-142	17	-117	58	-142	-158	†T-
β _B = 13	10 ³ g ₇₁	69Z	227	177	32	98	41	(0	4.9	-9	-122	122	-203	-227	\$ \$ \$	150	-52	-235
	10 ³ 8 ₇₀	589 289	172	14	-14	-1.39	1.28	-31,5	-366 -416	194-	₹.	-542	999	-636	88	41-	00 1 -	-645
	¥ .	0	; -i <u>,</u>	<u>.</u> .	ģ,	· 5.	વ ં ત્	ij	ين م	.65	۲.	÷.		, oʻ	 ģ. o	212	너감	디임
	,						_		_	_		_	_	_				
	10 ³ r _{q0}	-178.4 -187.5	25.5	-805.6	-200-t	24.0	-24t.1	-210.9	207.2	-195.3	-187.5	-179.2	159.3	-148.9	-137.9	-209.4	-202.5	-145.6
25	10 ³ g ₄₀ 10 ³ f ₄₀	140.7 -178.4	142.9 -194.9			-												149.2 -145.6
1 = 1.25	$10^{3}t_{\gamma3}$ $10^{3}g_{q0}$ $10^{3}t_{q0}$	140.7		141.7	140.3	139.2	139.1	15,75		145.3	147.0	147.8	149.6	149.5		140.3	2 142.5 -202.5	
t/1 = 1.25	$10^3 t_{\gamma 2} \left 10^3 t_{\gamma 3} \right 10^3 t_{q0} \left 10^3 t_{q0} \right $	-72.3 -1.1 140.7	7.17	-70.6 .4 141.9	-70.0 -7 140.3	-68.7 .4 139.2	68.3 .3 139.1	9.041 0 6.79-	-68.02 141.8 -68.33 143.4	-68.74 145.3	-69.46 147.0	-70.07 147.8	-70.0 - 4.149.6	-71.71 149.5	-72.1 .3 148.8 -72.3 1.1 150.8	-70.0 .7 140.3	-68.22 142.5	-71.8 0 149.2
1/1	$10^3 \epsilon_{\gamma 1} \frac{10^3 \epsilon_{\gamma 2}}{10^3 \epsilon_{\gamma 3}} \frac{10^3 \epsilon_{q 0}}{10^3 \epsilon_{q 0}} \frac{10^3 \epsilon_{q 0}}{10^3 \epsilon_{q 0}}$	141.1 -72.3 1.141.7	113.5 -71.7 .1 142.9	84.6 -70.6 .4 141.3	70.5 -70.0 7. 140.5	2.621 4. 7.89-61.4	27.9 -68.3 .3 139.1	9.041 0 6.79- 0	-15.9 -68.02 141.8 -27.0 -68.33 143.4	41.9 -68.74 145.3	-56.1 -69.46 147.0	-70.5 -70.0	-04.0 -71.24 149.6	-113.5 -71.71 149.5	-128.0 -72.1 .3 148.8 -141.1 -72.3 1.1 150.8	-70.0 .7 140.3	2 142.5	-118.4 -71.8 0 149.2
$\lambda = 30^{\circ}$ $t/l = 1.25$	$10^3 \epsilon_{\gamma 0} 10^3 \epsilon_{\gamma 1} 10^3 \epsilon_{\gamma 2} 10^3 \epsilon_{\gamma 3} 10^3 \epsilon_{40} 10^3 \epsilon_{40}$	141.1 -72.3 1.141.7	7.17	84.6 -70.6 .4 141.3	70.5 -70.0 7. 140.5	-68.7 .4 139.2	27.9 -68.3 .3 139.1	9.041 0 6.79- 0	-15.9 -68.02 141.8 -27.0 -68.33 143.4	41.9 -68.74 145.3	-69.46 147.0	-70.5 -70.0	-70.0 - 4.149.6	-113.5 -71.71 149.5	-128.0 -72.1 .3 148.8 -141.1 -72.3 1.1 150.8	70.5 -70.0 .7 140.3	-68.22 142.5	-118.4 -71.8 0 149.2
1/1	$10^3 g_{\gamma 3} \ 10^3 t_{\gamma 0} \ 10^3 r_{\gamma 1} \ 10^3 r_{\gamma 2} \ 10^3 r_{\gamma 3} \ 10^3 g_{40} \ 10^3 r_{40}$	16.5 141.5 141.1 -72.3 -1.1 140.7	14.2 84.1 113.5 -71.7 .1 142.9	-12.7 20.1 39.0 -71.2 .4 141.3 .10.9 28.1 84.6 -70.6 .6 1141.1	-9.1 7. 70.5 -70.5	-5.2 -55.4 41.9 -68.7 4 139.2	-5.4 -85.5 27.9 -68.5 .3 1.59.1	0 -140.6 0 -67.9 0 140.6	1.7 -169.6 -15.9 -68.02 141.8	5.2 -229.1 -41.9 -68.74 145.3	7.1 -259.2 -56.1 -69.4 6 147.0	9.1 -288.4 -70.5 -70. 7 147.8	10.9 - 217.9 - 04.0 - 70.04 149.6	14.2 -376.5 -113.5 -71.71 149.5	15.4 -404.8 -128.0 -72.1 .3 148.8 16.5 -453.0 -141.1 -72.5 1.1 150.8	-9.1 .3 70.3 -70.0 .7 140.3	-23.5 -68.22 142.5	18.4 -7.8 0 149.2
λ = 30 ⁰ t/1	$10^3 g_{\gamma 2} \ 10^3 g_{\gamma 3} \ 10^3 r_{\gamma 0} \ 10^3 r_{\gamma 1} \ 10^3 r_{\gamma 2} \ 10^3 r_{93} \ 10^3 r_{90} \ 10^3 r_{90}$	75.8 -16.5 141.5 141.1 -72.3 -1.1 140.7	-85.9 -14.2 84.1 115.5 -71.7 .1 142.9	-90.4 -12.7 50.1 99.0 - (1.2 .4 141.9 - 94.3 -10.9 28.1 84.6 - 70.6 .6 141.1	97.7 -9.1 .3 70.5 -70.0 .7 140.5	-102.8 -5.2 -55.4 41.9 -68.7 4 139.2	-104.5 -5.4 -83.3 27.9 -68.5 .5 129.1	0 -140.6 0 -67.9 0 140.6	-105.2 1.7 -169.6 -13.9 -68.02 141.8 1.00 x 2 -27.9 -68.33 143.4	102.8 5.2 -229.1 -41.9 -68.74 145.3	-100.5 7.1 -259.2 -56.1 -69.4 6 147.0	9.1 -288.4 -70.5 -70. 7 147.8	-94.5 10.9 -517.9 -84.5 -70.04 149.64 149.6	-85.9 14.2 -376.5 -113.5 -71.71 149.5	-81.0 15.4 -404.8 -128.0 -72.1 .3 148.8 -75.8 16.5 -453.0 -141.1 -72.3 1.1 150.8	-97.7 -9.1 .3 70.3 -70.0 .7 140.3	2.8 -189.5 -23.5 -68.22 142.5	-84.4 14.6 -386.0 -118.4 -71.8 0 149.2
1/1	$10^3 \mathrm{g}_{\gamma_1} \left[10^3 \mathrm{g}_{\gamma_2} \right] 10^3 \mathrm{g}_{\gamma_3} \left[10^3 \mathrm{f}_{\gamma_0} \right] 10^3 \mathrm{f}_{\gamma_2} \left[10^3 \mathrm{f}_{\gamma_3} \right] 10^3 \mathrm{g}_{0} \left[10^3 \mathrm{f}_{0} \right]$	188.7 -75.8 -16.5 141.5 141.1 -72.3 -1.1 140.7	156.5 -85.9 -14.2 84.1 115.5 -71.7 .1 142.9	120.8 -90.4 -12.7 20.1 99.0 -7.2 .4 141.9 120.8 -94.5 -10.9 28.1 84.6 -70.6 .6 141.1	101.8 -97.7 -9.1 -5 70.5 -70.0 -7 140.5	62.2 -102.8 -5.2 -55.4 41.9 -68.7 .4 139.2	41.7 -104.5 -5.4 -83.5 27.9 -68.5 .5 139.1	0 -105.5 0 -140.6 0 -67.9 0 140.6	-20.9 -105.2 1.7 -169.6 -15.9 -68.0 2 141.8 -20.9 -105.2 1.7 -109.0 -27.9 -68.0 2 143.4	-62.2 -102.8 5.2 -229.1 -41.9 -68.74 145.3	-82.3 -100.5 7.1 -259.2 -56.1 -69.46 147.0	-101.8 -97.7 9.1 -288.4 -70.5 -70.07 147.8	-94.5 10.9 -517.9 -04.5 -70.0 140.6 - 0.0 1 12.7 - 140.6 - 0.0 1 12.7 - 140.6 - 0.0 1 12.5 - 140.6	156.5 -85.9 14.2 -376.5 -113.5 -71.71 149.5	-175.1 -81.0 15.4 -404.8 -128.0 -72.1 .3 148.8 -188.7 -75.8 16.5 -433.0 -141.1 -72.3 1.1 150.8	101.8 -97.7 -9.1 .3 70.3 -70.0 .7 140.3	-189.5 -23.5 -68.22 142.5	-84.4 14.6 -386.0 -118.4 -71.8 0 149.2
$= 120^{\circ}$ $\lambda = 30^{\circ}$ t/l	$10^3 \mathrm{g}_{\gamma 0} \left[10^3 \mathrm{g}_{\gamma 1} \right] 10^3 \mathrm{g}_{\gamma 2} \left[10^3 \mathrm{g}_{\gamma 3} \right] 10^3 \mathrm{f}_{\gamma 0} \left[10^3 \mathrm{f}_{\gamma 1} \right] 10^3 \mathrm{f}_{\gamma 2} \left[10^3 \mathrm{f}_{\gamma 3} \right] 10^3 \mathrm{g}_{40} \left[10^3 \mathrm{f}_{40} \right]$	75.8 -16.5 141.5 141.1 -72.3 -1.1 140.7	156.5 -85.9 -14.2 84.1 115.5 -71.7 .1 142.9	77.5 159.0 -90.4 -12.7 50.1 59.0 -71.2 .4 141.9 56.0 120.8 -94.5 -10.9 28.1 84.6 -70.6 .6 141.1	5.8 101.8 -97.7 -9.1 5.7 70.5 -70.0 7.1 140.5	62.2 -102.8 -5.2 -55.4 41.9 -68.7 .4 139.2	-150.7 41.7 -104.5 -5.4 -85.5 27.9 -68.5 .5 159.1	-111.7 - 110.9 - 110.6 0 -67.9 0 140.6 0 -67.9 0 140.6	-20.9 -105.2 1.7 -169.6 -15.9 -68.0 2 141.8 -20.9 -105.2 1.7 -109.0 -27.9 -68.0 2 143.4	-319.7 -62.2 -102.8 5.2 -229.1 -41.9 -68.74 145.3	-352.1 -82.3 -100.5 7.1 -259.2 -56.1 -69.46 147.0	-101.8 -97.7 9.1 -288.4 -70.5 -70.07 147.8	-94.5 10.9 -517.9 -84.5 -70.04 149.64 149.6	1461.9 -156.5 -85.9 14.2 -376.5 -113.5 -71.71 149.5	-484.1 -175.1 -81.0 15.4 -404.8 -128.0 -72.1 148.8 -503.8 -188.7 -75.8 16.5 -433.0 -141.1 -72.3 1.1 150.8	101.8 -97.7 -9.1 .3 70.3 -70.0 .7 140.3	2.8 -189.5 -23.5 -68.22 142.5	14.6 -386.0 -118.4 -71.8 0 149.2

TABLE 17.- Continued

CASCADE DOWNWASH TABLES FOR HLADE ANGLES OF $\,\beta_{B} = 90^{o}$ TO 165^{o}

(corresponding to stagger angles of λ = 0° to 75°)

0.5
엁
Q
11
~ 4
OF
RATIO
PITCH
ARG

	10 ³ f _{q0}	23. 444-445. 11. 11. 14. 14. 14. 14. 14. 14. 14. 14	5655444 84484	-973	-770	-226
- 0.5	10 ³ go	2418948883488 2418948883488		853	830	δ <u>ζ</u>
t/1 =	$10^3 f_{\gamma 3} 10^3 g_{QO}$	1884 644 644 644 644 644 644 644 644 644	25.1.2 2.1.2 2.1.2 2.1.3 2.1.3	-45.0	0.01	81.6
	103e73 103e70 103e71 103e72	262 262 262 262 262 263 263 263 263 263	25.5. 25.5.	-395	-435	-32 t
30°	$^{10^3}r_{\gamma1}$	675 675 675 675 675 675 675 675 675 675	7.697. 1.	418	947-	-652
γ =	10 ³ £ ₇₀	88 886 887 887 888 888 888 888 8	177777	-13	67.2 -1,122	133.6 -1,806
	10 ³ 8 ₇₃	15824 4 4 5 5 5 4 5 5 5 5 5 5 5 5 5 5 5 5 5	153.1 149.2 138.3 103.4	-148.8	67.2	133.6
1200	10 ³ 8 ₇₁ 10 ³ 8 ₇₂	1128 1128 1278 1278 1278 1278 1278 1278		-370	16†−	-201
β ₈ =	10 ³ g ₇₁	668 668 668 668 668 668 668 668 668 668	9858458 9858458	750	-149	-617
	103870	88 65 65 4 4 4 5 8 8 8 6 7 6 7 7 8 8 6 7 7 7 7 8 8 8 7 7 7 7	1,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4	-133	-1,068	-1,460
	xi~	ۯڹڹڹ؋ۄؙڹڮۼؾؚ؞ڹڕؗٷۄؙڹ			니김	긔
	ક	8 0 0 + 0 + 8 0 0 0 0 0 0 0 0 + 4				
	1032	445 645 545 545 545 545 545 545 545 545	197487 197487 1987487	-514	459	δ
6.75	10 ³ eqo 10 ³ eqo	74 F F F 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		395 -511 ⁴	654- 504	333 20h
t/1 = 0.75	10 ³ f ₇₃ 10 ³ 840 10 ³ f		8 8 8 8 5 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6		·	
9	10 ³ £ ₇₂ 10 ³ £ ₇₃ 10 ³ &g0 10 ³ £	######################################	2, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,	0 395	+03	333
t/1 =	3f71 103f72 103f73 103g0	280 -175 -25.8 381 -175 -25.8 381 -175 -25.8 381 -186 -125 -186 -125 -186 -125 -186 -125 -186 -125 -186 -125 -186 -125 -186 -125 -125 -125 -125 -125 -125 -125 -125	-197 -195 0 203 -255 -194 1.3 373 -273 -192 9.2 357 -310 -188 14.5 359 -345 -182 20.2 320 -380 -175 25.8 299	. 197 -195 0 395	-2.9 403	16.4 553
9	3f71 103f72 103f73 103g0	1.75 - 25.8 1.88 - 1.25 - 388 1.98 - 1.25 - 389 1.99 - 3.9 - 399 1.99 - 3.9 - 399 1.94 - 1.8 - 4.3 - 399 1.94 - 1.8 - 4.9 - 399 1.95 - 3.9 - 3.9 - 399 1.95 - 3.9 - 3.	-197 -195 0 203 -255 -194 1.3 373 -273 -192 9.2 357 -310 -188 14.5 359 -345 -182 20.2 320 -380 -175 25.8 299	. 197 -195 0 395	-194 -2.9 405	-186 16.4 533
30° t/l =	3f71 103f72 103f73 103g0	280 -175 -25.8 381 -175 -25.8 381 -175 -25.8 381 -186 -125 -186 -125 -186 -125 -186 -125 -186 -125 -186 -125 -186 -125 -186 -125 -125 -125 -125 -125 -125 -125 -125	-779 -197 -195 0 205 -194 4.5 373 -194 4.5 373 -195 0.2 357 -196 14.5 359 -1.010 -345 -175 25.8 299	1 197 -195 0 395	-67 -194 -2.9 403 ·	-322 -186 16.4 333
$\lambda = 30^{\circ} \qquad t/l =$	3f71 103f72 103f73 103g0	279 380 -175 -25.8 381 281 282 283 381 282 283 382 283 283 283 283 283 283 283	50.5 -779 -197 -139 0 203 56.4 -843 -235 -194 4.3 373 60.1 -203 -273 -192 9.2 357 61.6 -959 -310 -188 14.5 339 61.1 -1,010 -345 -182 20.2 320 58.7 -1,059 -380 -175 25.8 299	-50.5 1 197 -195 0 595	-537 -67 -194 -2.9 403	-977 -322 -186 16.4 333
30° t/l =	3f71 103f72 103f73 103g0	-58.7 379 380 175 -25.8 381 -61.1 504 345 146 -20.2 586 -61.6 231 310 188 -14.5 389 -60.1 158 275 199 0.0 393 -14.5 310 188 -14.5 399 -15.1 199 195 3.9 399 -15.1 148 -10.8 10.9 10.9 10.9 10.9 10.9 10.9 10.9 10.9	-218 50.5 -779 -197 -195 0 505 -106 -106 -106 -106 -106 -106 -106 -106	-218 -50.5 1 197 -195 0 395	19.8 -537 -67 -194 -2.9 403	61.6 -977 -322 -186 16.4 333
= 120° $\lambda = 30^{\circ}$ $t/l =$	10 ³ 8,0 10 ³ 8,1 10 ³ 8,2 10 ³ 8,3 10 ³ 5,0 10 ³ 5,1 10 ³ 5,2 10 ³ 5,3 10 ³ 8 ₉₀ 10 ³ 5	460 409 -118 -58.7 379 380 -175 -25.8 381 276 381 -140 -61.1 304 345 -182 -20.2 382 270 377 -180 -180 -80.2 386 -14.5 389 170 377 -181 -60.1 155 273 -192 -9.2 399 -36 280 -20.6 -7.6 18 -3.7 -192 -9.2 391 -142 197 -2.9 -1.9 -1.9 -1.9 392 -142 1.9 -2.9 -7.8 -7.8 -1.9 -9.2 394 -142 1.9 -2.9 -7.8 -7.8 -1.9 -1.9 394 -142 1.0 -2.5 -2.5 -2.9 80 -1.9 -1.9 40.1 -153 1.0 -2.6 -12.1 -4.0 -1.9 -1.9 40.1 -1.9 -1.9 <td>-812 -239 -213 50.5 -779 -197 -197 0 303 -194 1-280 -200 56.4 -845 -255 -194 4.3 373 -195 10 303 -195 10 303 -195 10 303 -195 10 303 -195 10 303 -195 10 303 -195 10 303 -195 10 303 -195 10 303 -195 10 303 -195 10 303 -195 10 303 -195 10 303 -195 10 303 -105 10 345 10</td> <td>-36 239 -218 -50.5 1 197 -195 0 395 ·</td> <td>-262 19.8 -537 -67 -194 -2.9 403</td> <td>-154 61.6 -977 -322 -186 16.4 333</td>	-812 -239 -213 50.5 -779 -197 -197 0 303 -194 1-280 -200 56.4 -845 -255 -194 4.3 373 -195 10 303 -195 10 303 -195 10 303 -195 10 303 -195 10 303 -195 10 303 -195 10 303 -195 10 303 -195 10 303 -195 10 303 -195 10 303 -195 10 303 -195 10 303 -195 10 303 -105 10 345 10	-36 239 -218 -50.5 1 197 -195 0 395 ·	-262 19.8 -537 -67 -194 -2.9 403	-154 61.6 -977 -322 -186 16.4 333
= 120° $\lambda = 30^{\circ}$ $t/l =$	3f71 103f72 103f73 103g0	409 -118 -58.7 379 380 -175 -25.8 381 381 -140 -61.1 304 345 -182 -20.2 386 371 -181 -60.1 155 273 -182 -20.2 389 377 -181 -60.1 155 275 -198 -9.2 391 280 -20.6 -56.4 78 275 -199 -9.2 391 280 -20.6 -56.4 78 275 -194 -4.3 392 289 -289 -47.2 -78 119 -195 394 -4.3 392 197 -289 -28.5 -289 119 -195 3.9 394 100 -267 -12.1 -48.3 -40.3 -194 1.8 40.1 -80 -12.1 -48.4 -0 -194 -1.8 40.1 -80 -285 -12.1 -484 -0	-812 -239 -213 50.5 -779 -197 -197 0 303 -194 1-280 -200 56.4 -845 -255 -194 4.3 373 -195 10 303 -195 10 303 -195 10 303 -195 10 303 -195 10 303 -195 10 303 -195 10 303 -195 10 303 -195 10 303 -195 10 303 -195 10 303 -195 10 303 -195 10 303 -195 10 303 -105 10 345 10	-36 239 -218 -50.5 1 197 -195 0 395 ·	-83 -262 19.8 -537 -67 -19th -2.9 403 ·	-361 -154 61.6 -977 -322 -186 16.4 333

CASCADE DOWNWASH TABLES FOR BLADE ANGLES OF $\beta_B = 90^{\circ}$ TO 165° (CORRESPONDING TO STAGGER ANGLES OF λ = 0° TO 75°)

į [
	10 ³ £q0	-175.4	-179.0 -180.1	-181.2	186.	183.8	183.5	183.5	181.6	-180.7	-176.2	-172.8 -169.1	-165.0	-182.2	-182.7	-168.0
1 = 1.5	10 ³ 8q0		18.5										なる	10.6	13.9	8.0
1/1	10 ³ f ₇ 3	8.2	5.8	9.0	. w. o	2 2	٠.	7	2	7.4	6.4	က် ကို ကို ထိ ထ	7-8- 7-5	0.4	-1.1	-7.0
	10 ³ f 72	-20.6	44	6.0	9.0	7.7 7.7	アプラ	₩	10.	9 5	-9.4		-17.1	-7.8	-3.9	-15.h
= 450	10 ³ f ₇₁											- - - - - - - - - - - - - - - - - - -	-17.5	4.9	-1.7	-15.1
<	$10^3 \mathrm{g}_{\gamma 0}$ $10^3 \mathrm{g}_{\gamma 1}$ $10^3 \mathrm{g}_{\gamma 2}$ $10^3 \mathrm{g}_{\gamma 3}$ $10^3 \mathrm{f}_{\gamma 0}$ $10^3 \mathrm{f}_{\gamma 1}$ $10^3 \mathrm{f}_{\gamma 2}$ $10^3 \mathrm{f}_{\gamma 0}$ $10^3 \mathrm{f}_{\bar{q}0}$	८•सा 6•मा	4.0	∓ 0 10 0	1 ,	-7.4	6.6	14.1	-25.6	-32.7	-51.2	-62.6	-19.5	2.2	-17.3	-80.2
	$^{10^5}$ g $_{\gamma5}$	l	-4.8 -3.8				٠ <u>.</u> ٥	ώr					5.8 6.9	-2.3	9.	5.1
= 135°	10 ³ 872		-86.3 4.78-										-85.0 -83.4	-88.7	-89.6	9 . 48-
er en	10 ⁵ g ₇₁		143.2				18.2				•	-125.9	-160.4 -177.2	90.5	-30.4	1466.0 -149.0
	10 ³ g ₇₀	179.0			-57.6	-111.0	-147.1	-219.9	-280.6	-325.7 -359.4	-38.9	-424.6 -455.5	-485.8 -514.6	-1.2	-243.5	٠٠99
	×I~	.05	1.1	دئ پر	با ت	•;⊸•	÷.	ıç.	.6	٠. ب	<u>-</u> ω.	ည့်ပ	1.0	지각	니외	긔
٠ا	0															
1	5		0 N	M 4	10	7 10	62	<u>ال</u>	l N	0.4	<u>.</u>	m o	<u> 200</u>		<u>+</u>	
	103£	-101.4	-102.0	-102.3	-102.5	-102.5	-102.5	-102.5	-102.2	1020		<u>'</u> _	8,8	-102.4	-102.4	-99.7
2.0	10 ³ Eq0 10 ³ E		6.2 -102.0 5.3 -102.2									<u>'</u> _	20.9 -93.5	3.9 -102.4	4.201-	1.91
t/1 = 2.0	10 ³ t _{y3} 10 ³ eq0 10 ³ t	8.7		4 હ જે	, K,		9. 5. 6. 6.		5.7	۲- « د ۰	10.9	15.0				
n	103t 72 103t 73 1038q0 103t q0	2.9 8.7	5.5	4.1 4.1 7.4	7.7.	ر. د. ۲.۰	0 3.2	1 3.8	5 5.7	7.7	-1.4 10.9	-1.8 13.0	-2.5 18.0	3.9	4.2	16.1
t/l =		-6.7 2.9 8.7 -5.6 2.5 7.4	4.6 2.2 6.2 -3.8 1.8 5.3	-3.1 1.4 4.5	4.5 7. 5.4	-1.7 .3 5.0	1.4 0 2.9	-1.41 3.8	1.75 5.7	-2.17 7.3	-3.1 -1.4 10.9	-5.8 -1.8 15.0 -4.6 -2.2 15.3	-2.5 18.0	1.0 3.9	Z-# Z	-2.3 16.1
n		7.2 -6.7 2.9 8.7 5.8 -5.6 2.5 7.4	4.6 4.6 2.2 6.2 3.6 -3.8 1.8 5.3	2.8 -3.1 1.4 4.5	1.5 -2.1 .7 5.4	7 -1.5 3 3.0	0 4.1- 0 5.9	7 -1.41 3.8	-1.1 -1.75 5.7	-1.5 -2.17 7.3	-2.8 -3.1 -1.4 10.9	1-3.6 -3.8 -1.8 13.0 -	-5.6 -2.5 18.0 -6.7 -2.9 20.9	-2.5 1.0 3.9	-1.52 4.2	4.9 -2.3 16.1
= ½0 t/1 =		-2.5 5.7 7.2 -6.7 2.9 8.7 -2.5 4.2 5.8 -5.6 2.5 7.4	-1.8 3.0 4.6 4.6 2.2 6.2 -1.4 1.9 3.6 -3.8 1.8 5.3	-1.1 1.1 2.8 -5.1 1.4 4.5	7. 7. 1.5. 1.5. 7. 5.4	2 -1.0 1.1 -1.7 .5 5.2 -1.1 -1.5 .3 5.0	0 -2.3 .3 -1.4 .1 2.9	0 4.4541 5.8	5.7 5 7.1- 1.1- 6.7- 5.	.5 -10.3 -1.5 -2.17 7.3 8 1.3 1.2 1 2.5 1.0 8.9	1.1 -16.5 -2.8 -3.1 -1.4 10.9	1.4 -20.2 -3.6 -3.8 -1.8 13.0 - 1.8 -24.5 4.6 -4.6 -2.2 15.3	2.2 -29.6 -5.8 -5.6 -2.5 18.0 2.5 -35.5 -7.2 -6.7 -2.9 20.9	8 .3 2.1 -2.5 1.0 3.9	.1 -5.46 -1.52 4.2	1.9 -26.1 -5.0 4.9 -2.3 16.1
$\lambda = 45^0 \qquad t/l =$		49.3 -2.5 5.7 7.2 -6.7 2.9 8.7 49.6 -2.2 4.2 5.8 -5.6 2.5 7.4	-49.9 -1.8 3.0 4.6 -4.6 2.2 6.2 -50.1 -1.4 1.9 3.6 -3.8 1.8 5.3	-50.2 -1.1 1.1 2.8 -5.1 1.4 4.5	-50.454 1.52.1 -7 5.4	-50.41 -1.6 .7 -1.5 .3 3.0	-50.4 0 -2.3 .3 -1.4 .1 2.9 -50.4 0 -3.2 0 -1.4 0 3.2	-50.4 0 4.13 -1.41 5.8	5.5 5 7.1- 1.1- 6.7- 5. 4.06-	-50.4 .5 -10.3 -1.5 -2.17 7.3	-50.2 1.1 -16.5 -2.8 -5.1 -1.4 10.9	-50.1 1.4 -20.2 -5.6 -5.8 -1.8 15.0 -	49.6 2.2 -29.6 -5.8 -5.6 -2.5 18.0 49.3 2.5 -35.3 -7.2 -6.7 -2.9 20.9	-50.58 .3 2.1 -2.5 1.0 3.9	-50.4 .1 -5.46 -1.52 4.2	49.8 1.9 26.1 -5.0 4.9 -2.3 16.1
= ½0 t/1 =		99.1 149.3 -2.5 5.7 7.2 -6.7 2.9 8.7 90.6 149.6 -2.5 4.2 5.8 -5.6 2.5 7.4	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	51.2 -50.2 -1.1 1.1 2.8 -5.1 1.4 4.5	40.9 -50.454 1.5 -2.1 -7 3.4	20.5 -50.41 -1.6 .7 -1.5 .3 3.0	10.5 -50.4 0 -2.5 .3 -1.4 .1 2.9 0 -50.4 0 -5.2	-10.3 -50.4 0 4.43 -1.41 5.8	-30.7 -50.4 -3 -7.5 -1.1 -1.7 -5.7 -5.7	-40.9 -50.4 .5 -10.3 -1.5 -2.17 7.3	-61.3 -50.2 1.1 -16.5 -2.8 -3.1 -1.4 10.9	-71.6 -50.1 1.4 -20.2 -3.6 -3.8 -1.8 13.0 - -81.5 -40.9 1.8 -24.5 -4.6 -4.6 -2.2 15.3	-90.6 49.6 2.2 -29.6 -5.8 -5.6 -2.5 18.0 -99.1 49.3 2.5 -35.3 -7.2 -6.7 -2.9 20.9	8 .3 2.1 -2.5 1.0 3.9	-17.5 -50.4 .1 -5.46 -1.52 4.2	-84.6 -49.8 1.9 -26.1 -5.0 4.9 -2.3 16.1
$= 135^{\circ}$ $\lambda = 45^{\circ}$ $t/l =$	1038,0 1038,1 1038,2 1038,3 1032,0 1032,1 1032,2 1032,3 1038,0 1035	96.8 99.1 -19.3 -2.5 5.7 7.2 -6.7 2.9 8.7 70.5 90.6 -19.6 -2.5 1.4.2 5.8 -5.6 2.5 7.4	61.0 81.5 49.9 -1.8 3.0 4.6 4.6 2.2 6.2 41.0 71.6 -50.1 -1.4 1.9 3.6 -3.8 1.8 5.3	20.3 61.3 -50.2 -1.1 1.1 2.8 -5.1 1.4 4.5	-20.7 40.9 -50.454 1.5 -2.1 .7 5.4	-41.1 50.7 -50.41 -1.0 1.1 -1.7 .5 5.2 -61.5 20.5 -50.41 -1.6 .7 -1.5 .3 5.0	-81.9 10.3 -50.4 0 -2.3 .3 -1.4 .1 2.9 -102.6 0 -50.4 0 -3.2 0 -1.4 0 3.2	-125.1 -10.3 -50.4 0 -4.45 -1.41 5.8	163.6 -30.7 -50.4 .3 -7.9 -1.1 -1.75 5.7	204 0 -51 2 -50 4 -5 -10.3 -1.5 -2.17 7.3	-223.7 -61.3 -50.2 1.1 -16.5 -2.8 -3.1 -1.4 10.9	-245.5 -71.6 -50.1 1.4 -20.2 -3.6 -3.8 -1.8 13.0 -262.9 -81.5 -49.9 1.8 -24.5 -4.6 -4.6 -2.2 15.3	49.6 2.2 -29.6 -5.8 -5.6 -2.5 18.0 49.3 2.5 -35.3 -7.2 -6.7 -2.9 20.9	-50.58 .3 2.1 -2.5 1.0 3.9	-50.4 .1 -5.46 -1.52 4.2	49.8 1.9 26.1 -5.0 4.9 -2.3 16.1

CASCADE DOWNWASH TABLES FOR BLADE ANGLES OF $\beta_{\rm B} = 90^{\rm O}$ to $165^{\rm O}$

(CORRESPONDING TO STAGGER ANGLES OF λ = 0° TO 75°)

AND PITCH RATIO OF $\frac{t}{l} = 2$ TO 0.5

	10 ³ f q0	-351 -365	-376 -385	-398 -398	1403 1403	-405 405	10	-397 -390	1,200	-36d 353	325	-312	6 19 19 19 19	-233	-399	-391	-281
	$10^3 g_{\gamma 0} \ 10^3 g_{\gamma 1} \ 10^3 g_{\gamma 2} \ 10^3 g_{\gamma 3} \ 10^3 f_{\gamma 0} \ 10^3 f_{\gamma 1} \ 10^3 f_{\gamma 2} \ 10^3 f_{\gamma 3} \ 10^3 g_{q0} \ 10^3 f_{q0}$	4.111 96.0	81.4 67.5	55.2 45.8	39.5	26.9	48.7	29.6	8,0	106.6	141.6	157.4	183.3	192.4	45.8	68.0	175.5
t/l = 1.0	10 ³ f ₇ 3	24.0 23.9	88.8 1.1.8	थ हु ७.७	16.4	80 H	0.	4. 6. 7. 8.	-12.7	-16.4	6.42-	-23.1	-23.9	-24.0	19.6	4.7-	-23.8
t	10 ³ f y2	-79.3	-52.3	-33.6	-8.59 -8.59	-19.3	-15.7	-16.4	-23.8	6,7 6,7	2.4.	-52.8	-62.5 -71.1	-79.3	-36.6	-18.2	2.49-
	10 ³ ¢ 11	89.6 75.0	61.7 49.7	39.0 30.1	22.4 15.8	10.0) (-10.0	-15.8	-22.4	-39.0	7.64-	-61.7	-89.6	30.1	-8.2	-66.0
λ = 450	10 ³ t 70	67.8 72.0	42.0 21.9	85.4. 1.4.1	4.0	-16.9					9.68-	-256.8	-233.3	-577.6	17.41	₹. 18-	-307.5 -66.0
	103873	-33.6											¥ 8		-12.7	3.6	26.1
1350	10 ³ 872	-150	-170	1 1 9 8	-193	1.98	1,89	1.19	-186	1.93	\$6 1 1	-178	17.09	-150	-189	-198	-167
βs = 13	10 ³ g _{y1}	365 335	88 20	1963	27.1 87.1	8.5	3 0	우 두	-119	1.58	-233	-868	-302	-365	196	- 67	-313
	10 ³ gy0	379 305	82 17 1	72	-87	-245	Ç.↓ Ç.₫	-t-77	-618	89.	- 4 - 28 - 38	9,48	266	-963	-7	-525	-907
	xI~	0.05	1. 2.	oi gi	v.r.)- 1 -	÷÷	<u>5</u> ,	.6.	٠. ا		.85	တ်ရှိ	1.0	<u>ح</u> ا21	72	긔임
	10 ³ f 90	-243.5 -248.6	-252.3	-257.5	-261.6	-863.2	-262.6	-262.1	-256.9	-252.6	-241.6	4.462-	-225.4	-202.4	-259.9	-260.8	-222.0
25	10 ³ gq0 10 ³ fq0	53.2 -243.5 44.5 -248.6	36.9 -252.3 30.2 -255.2		16.5 -261.6		_						101 0 -214 7		19.9 -259.9	28.3 -260.8	93.5 -222.0
/1 = 1.25	103f73 103gg0 103fg0	14.0 55.2 -243.5 15.7 44.5 -248.6	% & 6.0	24.5 19.9	16.5	6.0	20.1	₹ ₹	\ ₹ ₹	47.9	2, co	79.5		110.2			
t/l = 1.25	$10^3 \epsilon_{\gamma 2} 10^3 \epsilon_{\gamma 3} 10^3 \epsilon_{q0} 10^3 \epsilon_{q0}$	14.0 53.2 13.7 44.5	% & 6.0	10.2 24.5 8.7 19.9	6.9 16.5	0.41	0 20.1	-1.8 24.6	25.3	6.9 47.9	-8.7 57.6	-11.7 79.2	-12.9	-14.0 110.2	19.9	28.3	93.5
t/1	$10^{3}e_{\gamma 1}$ $10^{3}e_{\gamma 2}$ $10^{3}e_{\gamma 3}$ $10^{3}e_{q 0}$ $10^{3}e_{q 0}$	-39.7 14.0 53.2 -34.4 13.7 44.5	-29.0 12.9 36.9 -24.2 11.7 30.2	-19.7 10.2 24.5 -15.9 8.7 19.9	12.5 6.9 16.5	7.9 3.5 14.9	-6.8 1.8 16.9	-6.8 -1.8 24.6	-6.9 6.5- 6.6- -9.9 8.7-	-12.5 -6.9 47.9	-15.9 -8.7 57.6 -19.7 -10.2 69.8	-24.2 -11.7 79.2	-29.0 -12.9	-39.7 -14.0 110.2	12.8 -15.9 8.7 19.9	-3.0 28.3	-30.9 -13.2 93.5
450 t/1	$10^{3}t_{70}$ $10^{3}t_{71}$ $10^{3}t_{72}$ $10^{3}t_{73}$ $10^{3}\epsilon_{40}$ $10^{3}t_{90}$	-39.7 14.0 53.2 -34.4 13.7 44.5	-29.0 12.9 36.9 -24.2 11.7 30.2	-19.7 10.2 24.5 -15.9 8.7 19.9	12.5 6.9 16.5	7.9 3.5 14.9	-6.8 1.8 16.9	-6.8 -1.8 24.6	-6.9 6.5- 6.6- -9.9 8.7-	-12.5 -6.9 47.9	-15.9 -8.7 57.6 -19.7 -10.2 69.8	-24.2 -11.7 79.2	-29.0 -12.9	-39.7 -14.0 110.2	-15.9 8.7 19.9	-7.5 -3.0 28.3	-30.9 -13.2 93.5
t/1	$10^3 g_{\gamma 3} \ 10^3 \epsilon_{\gamma 0} \ 10^3 \epsilon_{\gamma 1} \ 10^3 \epsilon_{\gamma 2} \ 10^3 \epsilon_{\gamma 3} \ 10^3 \epsilon_{q 0} \ 10^3 \epsilon_{q 0}$	-14.2 31.2 42.2 -39.7 14.0 55.2 -12.0 24.5 34.5 -34.4 13.7 44.5	-9.9 18.7 27.8 -29.0 12.9 36.9 -8.0 15.8 22.0 -24.2 11.7 30.2	-6.2 9.5 17.0 -19.7 10.2 24.5 4.5 5.7 12.8 -15.9 8.7 19.9	-5.2 2.1 9.3 -12.5 6.9 16.5	-1.3 -6.7 4.1 -7.9 5.5 14.9	7 -12.8 2.0 -6.8 1.8 16.0 0 -20.1 0 -6.4 0 20.1	7 -28.6 -2.0 -6.8 -1.8 24.6	2.1 -51.7 -6.5 -9.9 -5.3 38.7	5.2 -66.5 -9.3 -12.5 -6.9 47.9	-83.2 -12.8 -15.9 -8.7 57.6 -102 0 -16.1 -19.7 -10.2 69.8	-123.2 -22.0 -24.2 -11.7 79.2	-29.0 -12.9	194.6 42.2 -39.7 -14.0 110.2 -	12.8 -15.9 8.7 19.9	-3.4 -7.5 -3.0 28.3	-30.9 -13.2 93.5
$\lambda = 45^{\circ}$ t/ λ	10^{3} Eyz 10^{3} Eyz 10^{3} Fy 10^{3} Fy 10^{3} Fy 10^{3} Fy 10^{3} Eq 10	-14.2 31.2 42.2 -39.7 14.0 55.2 -12.0 24.5 34.5 -34.4 13.7 44.5	-9.9 18.7 27.8 -29.0 12.9 36.9 -8.0 15.8 22.0 -24.2 11.7 30.2	-6.2 9.5 17.0 -19.7 10.2 24.5 4.5 5.7 12.8 -15.9 8.7 19.9	-5.2 2.1 9.3 -12.5 6.9 16.5	-1.3 -6.7 4.1 -7.9 5.5 14.9	7 -12.8 2.0 -6.8 1.8 16.0 0 -20.1 0 -6.4 0 20.1	7 -28.6 -2.0 -6.8 -1.8 24.6	2.1 -51.7 -6.5 -9.9 -5.3 38.7	3.2 -66.5 -9.3 -12.5 -6.9 47.9	4.5 -83.2 -12.8 -15.9 -8.7 57.6 8 8 8 9.8 8	8.0 -123.2 -22.0 -24.2 -11.7 79.2	9.9 -145.9 -27.8 -29.0 -12.9	-112.4 14.2 -194.6 42.2 -39.7 -14.0 110.2 -	-4.5 5.7 12.8 -15.9 8.7 19.9	1.1 -35.1 -3.4 -7.5 -3.0 28.3	-30.9 -13.2 93.5
450 t/1	10^{3} $\epsilon_{\gamma 1}$ 10^{3} $\epsilon_{\gamma 2}$ 10^{3} $\epsilon_{\gamma 3}$ 10^{3} $\epsilon_{\gamma 0}$ 10^{3} $\epsilon_{\gamma 1}$ 10^{3} $\epsilon_{\gamma 2}$ 10^{3} $\epsilon_{\gamma 3}$ 10^{3} $\epsilon_{q 0}$	248.5-112.4-14.2 31.2 42.2 -39.7 14.0 55.2 225.7-116.3-12.0 24.5 34.5 -34.4 13.7 44.5	202.3 -119.6 -9.9 18.7 27.8 -29.0 12.9 36.9 178.3 -122.2 -8.0 13.8 22.0 -24.2 11.7 30.2	153.8 -124.2 -6.2 9.5 17.0 -19.7 10.2 24.5 17.9 9.1 15.9 8.7 19.9	103.5 -127.0 -3.2 2.1 9.3 -12.5 6.9 16.5	52.0 -128.4 -1.3 -6.7 4.1 -7.9 3.5 14.9	26.0 -128.6 7 -12.8 2.0 -5.8 1.6 15.0 0 -128.7 0 -20.1 0 -6.4 0 20.1	-26.0 -128.6 .7 -28.6 -2.0 -6.8 -1.8 24.6	-72.0 -120.4 1.5 -73.2 -4.1 -1.5 -7.5 -7.5 -7.7 -6.5 -9.9 -5.3 38.7	3.2 -66.5 -9.3 -12.5 -6.9 47.9	4.5 -83.2 -12.8 -15.9 -8.7 57.6 8 8 8 9.8 8	8.0 -123.2 -22.0 -24.2 -11.7 79.2	9.9 -145.9 -27.8 -29.0 -12.9	-112.4 14.2 -194.6 42.2 -39.7 -14.0 110.2 -	128.9 -125.8 -4.5 5.7 12.8 -15.9 8.7 19.9	-43.6 -128.4 1.1 -35.1 -3.4 -7.5 -3.0 28.3	-30.9 -13.2 93.5
= 1350 $\lambda = 45^{\circ}$ t/1	$10^3 g_{\gamma 0} \left[10^3 g_{\gamma 1} \right] 10^3 g_{\gamma 2} \left[10^3 g_{\gamma 3} \right] 10^3 f_{\gamma 0} \left[10^3 f_{\gamma 1} \right] 10^3 f_{\gamma 2} \left[10^3 f_{\gamma 3} \right] 10^3 g_{0} \left[10^3 f_{0} \right]$	248.5-112.4-14.2 31.2 42.2 -39.7 14.0 55.2 225.7-116.3-12.0 24.5 34.5 -34.4 13.7 44.5	152.3 202.3 -119.6 -9.9 18.7 27.8 -29.0 12.9 36.9 101.4 178.3 -122.2 8.0 15.8 22.0 -24.2 11.7 30.2	50.1 155.8 -124.2 -6.2 9.5 17.0 -19.7 10.2 24.5	-54.6 103.5 -127.0 -3.2 2.1 9.3 -12.5 6.9 16.5	-159.2 52.0 -128.4 -1.3 -6.7 4.1 -7.9 5.5 14.9	7 -12.8 2.0 -6.8 1.8 16.0 0 -20.1 0 -6.4 0 20.1	-26.0 -128.6 .7 -28.6 -2.0 -6.8 -1.8 24.6	2.1 -51.7 -6.5 -9.9 -5.3 38.7	459.6 -103.5 -127.0 3.2 -66.5 -9.3 -12.5 -6.9 47.9	-83.2 -12.8 -15.9 -8.7 57.6 -102 0 -16.1 -19.7 -10.2 69.8	8.0 -123.2 -22.0 -24.2 -11.7 79.2	-630.0 -202.3 -119.6 9.9 -145.9 -27.8 -29.0 -12.9	14.2 -194.6 -42.2 -59.7 -14.0 110.2 -	-4.5 5.7 12.8 -15.9 8.7 19.9	1.1 -35.1 -3.4 -7.5 -3.0 28.3	-15.2 93.5

CASCADE DOWNWASH TABLES FOR BLADE ANGLES OF $~\beta_{B}$ = $90^{\rm o}$ To $165^{\rm o}$

(corresponding to stagger angles of λ = 0° to 75°)

	10 ³ £ ₉₀	- 789 - 100 - 100	-336
2	103890		064
t/1 = 0.5	$10^3 f_{\gamma 5}$	% % 4 23 3 2 5 5 7 8 6 5 5 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6	ដ
Ţ.	10 ³ £y2	63 63 63 63 63 63 63 63 63 63 63 63 63 6	-288
0		288 4 288 4 28 28 28 28 28 28 28 28 28 28 28 28 28	-405
λ = 450	10 ³ 8 _{y3} 10 ³ f _{y0} 10 ³ f _{y1}	######################################	-1,300
	10 ³ 8 ₇ 3	288888644444444468888888888888888888888	192
135°	103872	25,55,55,55,55,55,55,55,55,55,55,55,55,5	-308
β _E = 1	10 ³ g _{y0} 10 ³ g _{y1}		-866
	10 ³ g _{y0}		-2,068
	×I~		긔김

	10 ³ £ ₉₀	2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2	
75	10 ³ 8q0	8 6 22 22 22 22 22 22 22 22 22 22 22 22 2	
t/l = 0.75	10 ³ £ ₇ 3	8 x x x x x x x x x x x x x x x x x x x	
t,	10³r,2	* * * * * * * * * * * * * * * * * * *	
	10 ³ t ₇₁	84. 44. 44. 44. 44. 44. 44. 44. 44. 44.	
λ = 450	10 ³ £ 70	おおとののとコはためまるなはたまるなられる。な 4な 2な 4な 5な 5な	,
	10 ³ g ₇₃	もちたんだすずかおよっしるの半年でのちちの 幸 ひ ち	<u>`</u>
1350	10 ³ 872	** \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	· }
β _B = 1	10 ³ g ₇ 1		
	10 ³ 870	4.04 2.03	
	×I~	° ဥပည္ပရစ္လပ္လာရည္ ပည္ပရဲတ္သင္းမွာ အစ္အစ္တစ္တပ္ မရြာ पाः	12

CASCADE DOWNWASH TABLES FOR BLADE ANGLES OF $\beta_B = 90^{\circ}$ TO 165°

(CORRESPONDING TO STAGGER ANGLES OF $\lambda = 0^{\circ}$ TO 75°)

													_					
	10 ³ fq0	-180.2	-175.2	-172.7 -170.6	-169.1	-167.4	-167.9	-100.4	-171.6	-176.7	-180.2	-194.5	193.0	-198.3	-206.6	-1691-	-172.0	-45.9 -198.6
= 1.5	10 ⁵ eqo	-67.3	-76.2	-79.0	166		99. 190.	5,89	요. 간.	6:11-	-74.8	2.5	-57.7	0.64-	-20.3	-83.1	-80.1	45.9
t/1	$10^3 g_{\gamma 0} \ 10^3 g_{\gamma 1} \ 10^3 g_{\gamma 2} \ 10^3 g_{\gamma 3} \ 10^3 f_{\gamma 0} \ 10^3 f_{\gamma 1} \ 10^3 f_{\gamma 2} \ 10^3 f_{\gamma 3} \ 10^3 g_{Q0}$	6.6 6.0	19.0	€. 4.	, K	7.0	1.5	٠.	<u> </u>	72.2	-2.7	かる	5.3	9.9	6.6-	3.5	-1.3	-7.1
	$^{10^5}$ r2	26.4		35.3							79.7	58.7	35.5	32.9	2,6% 5,6%	38.7	41.2	¥2.0
009 =	10 ⁵ f ₇₁	-72.2										40.2		61.2		-40.2	13.7	63.2
~	10 ³ £ 70	-77.1	16.2	4.05-	2.7	19.0	5.12	6.7. 6.7.	97.9	126.7	139.6	150.6	167.1	171.4	171.9	2.7	107.5	172.3
	10 ⁵ g ₇₅	3.3	, a	9.0	8.1	٠ <u>.</u> د	7.	٠. ٠	÷	-1-5	-1.5	ц. С	9.0	-2.9	かん	1.8	7	-3.0
= 150°	10 ³ g ₇₂	#. #.	8,8	88.7	.1. 1.1.	8. 8	38	9.18- 7.19-	е- 6.	9 9 9 9	.83.	بن. بند	186	0.0	-58 -58 -58	-85.1	-82.1	-90.7
βε	10 ³ g ₇₁	176.6	158.9	120.8	85.0	67.8	3.5.	6.9	-16.9	-55-	-67.8	95.5	-120.8	-138.9	-157.7	85.2	-28.0	489.0 -145.2
	10 ³ g _{y0}	173.0	102.6	68.9	1.3	-31.8	-100.7	-12t-	-205.4	-241.1	-315.8	- ***			-517.7 -559.8	1.3	-228.0	0.684
			_	2	Š		<u> </u>	5.0	52	5	\ <u></u>	£-a		, 6	وؤة	지김	건감	리엄
	×I~	َ ا	5. ∟	٠,٠	i 4i		<u>.</u>	~. ·.				<u>.</u>	•	•		- 10	- 1111	,
	xi~	<u> </u>													<u> </u>	- 11-	- 11-1	.,,
	L	<u> </u>														-92.0	-93.4	-104.0
2.0	10 ³ f ₉₀	0 6.76-	ο φ. γ. δ .	1. 93.5	28.0	-91.6	-91.2	-91.3	-8-1	93.8	-8.0	-97.5	28.5	-103.4	-37.5 -105.2			-39.3 -104.0
t/1 = 2.0	10 ³ f ₉₀	0 5.79- 7.54-	1.71	2.6	148.8 -92.0	9.16- 2.64-	-91.2	49.6 -91.3	1,9.2	93.8	0.96-0.74-	45.6 -97.5	1001-1001	40.2 -103.4	-105.2	-92.0	-93.4	-104.0
	10 ³ f ₉₀	0 6.76- 7.54- 8.6 6.00	21.5 2.7 -46.4 -36.0	22.9 1.7 47.7 -93.5	23.79 .48.8 -92.0	9.16- 3.64- 9. 0.45	2.15- 2.45- 4. 2.45	24.4 .1 .1 49.6 -91.3	7.26- 2.64- 1 4.42	24.3 - 1.2 - 48.8 - 93.8	24.0647.0 -96.0	23.79 45.6 -97.5	25.5 -1.5 -44.1 -59.4	22.3 -2.2 -40.2 -103.4	21.5 -2.7 -37.5 -105.2 20.6 -3.3 -34.5 -107.0	-48.8 -92.0	24.31 -48.9 -93.4	22.0 -2.4 -39.3 -104.0
t/l =	18 1038 1038 1038 1038 1038 1038 1038 10	0 6.76- 7.54- 5.5 4.54-	12.3 21.5 2.7 146.4 195.0	-33.6 22.9 1.7 47.7 -93.5	25.5 25.7 2.9 2.6.9	9.16- 3.64- 9. 0.42 9.61-	-14.8 24.5 4. 2.45. -9.9 -9	1. 4.42 6.41.	7.99 2.94 - 1. 4.49 6.4	9.9 24.32 - 48.8 -93.8	19.6 24.06 -47.0 -96.0	24.3 23.79 45.6 -97.5	29.0 25.5 -1.5 -44.1 -79.4 xx 6 22.0 21.7 -10.3 -102.1	38.0 22.3 -2.2 -40.2 -103.4	42.3 21.5 -2.7 -37.5 -105.2 46.4 20.6 -3.3 -34.5 -107.0	-24.3 23.7 .9 .48.8 -92.0	1 -48.9 -95.4	-2.4 -39.3 -104.0
	18 1038 1038 1038 1038 1038 1038 1038 10	0 6.76- 7.54- 5.5 4.54-	12.3 21.5 2.7 146.4 195.0	-33.6 22.9 1.7 47.7 -93.5	25.5 25.7 2.9 2.6.9	9.16- 3.64- 9. 0.42 9.61-	-14.8 24.5 4. 2.45. -9.9 -9	1. 4.42 6.41.	7.99 2.94 - 1. 4.49 6.4	9.9 24.32 - 48.8 -93.8	19.6 24.06 -47.0 -96.0	24.3 23.79 45.6 -97.5	29.0 25.5 -1.5 -44.1 -79.4 xx 6 22.0 21.7 -10.3 -102.1	38.0 22.3 -2.2 -40.2 -103.4	21.5 -2.7 -37.5 -105.2 20.6 -3.3 -34.5 -107.0	-24.3 23.7 .9 .48.8 -92.0	24.31 -48.9 -93.4	22.0 -2.4 -39.3 -104.0
= 60° t/l =	18 1038 1038 1038 1038 1038 1038 1038 10	0 5.79- 7.24- 80.6 3.3 4.34- 1.74- 10	1.2 -38.2 -42.3 21.5 2.7 -46.4 -90.0	1.2 -19.5 -55.6 22.9 1.7 -47.7 -95.5	1.0 -29.3 23.7 .9 48.8 -92.0	3.19- 3.64- 0.45 3.61- 0.01 8.	. 6. 19.9 - 14.8 24.5 4.6 6.91	2 39.8 4.4 1. 4.49.6 -91.3	2.2 59.0 4.9 24.41 -49.2 -92.7	77 7 7 1 8 24.3 -1.2 -48.8 -93.8 -1.1 -48.1 -04.9	8 86.2 19.6 24.06 -47.0 -96.0	-1.0 94.2 24.3 23.79 45.6 -97.5	-1.1 102.1 29.0 25.5 -1.5 -44.1 -99.4	-1.2 116.2 38.0 22.3 -2.2 -40.2 -103.4	-1.2 122.1 42.3 21.5 -2.7 -37.5 -105.2 -1.1 127.3 46.4 20.6 -3.3 -34.5 -107.0 1	1.0 .2 -24.5 23.7 .9 48.8 -92.0	5 65.5 8.2 24.51 -48.9 -95.4	-1.2 118.4 59.4 22.0 -2.4 -39.3 -104.0
$\lambda = 60^{\circ} \qquad t/l =$	18 1038 1038 1038 1038 1038 1038 1038 10	0 5.76- 7.54- 5.6 3.3 46.4 1.74- 1.1 0.06-	1.2 -38.2 -42.3 21.5 2.7 -46.4 -96.0	47.4 1.2 19.5 -33.6 22.9 1.7 -47.7 -93.5	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	24.5.3 .8 10.0 -19.6 24.0 .6 -49.2 -91.6	20,44.8	1. 4.45 6.4 - 9.6 - 91.3	4.32 59.0 4.9 24.41 49.2 -92.7	144.5 - 14 68.6 9.9 24.3 - 2 - 48.8 - 93.8	45.38 86.2 19.6 24.06 -47.0 -96.0	46.0 -1.0 94.2 24.3 23.79 45.6 -97.5	-46.6 -1.1 102.1 29.0 25.5 -1.5 -44.1 -99.4	48.2 -1.2 116.2 38.0 22.3 -2.2 -40.2 -103.4	-49.1 -1.2 122.1 42.3 21.5 -2.7 -37.5 -105.2 -50.0 -1.1 127.3 46.4 20.6 -5.3 -34.5 -107.0 1	46.0 1.0 .2 -24.3 23.7 .9 48.8 -92.0	44.43 65.3 8.2 24.31 48.9 -93.4	48.5 -1.2 118.4 39.4 22.0 -2.4 -39.3 -104.0
= 60° t/l =	18 1038 1038 1038 1038 1038 1038 1038 10	0 5.76- 7.54- 5.5 3.05 4.94- 1.74- 1.1 0.06- 9.49	84.8 49.1 1.2 -38.2 42.3 21.5 2.7 -46.4 -90.0	65.1 47.4 1.2 -19.5 -53.6 22.9 1.7 -47.7 -93.5	15.5 1.46.0 1.02 -24.5 25.79 -48.8 -92.0	36.6 4.5.3 .8 10.0 -19.6 24.0 .6 4.9.6	27.3 44.8 .6 19.9 -14.8 24.5 4.4.6 -9.0 18.0 18.0 18.0 19.6 19.6 19.6 19.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18	9.2 44.3 .2 39.8 4.4 9.4 4 9.6 -91.3	-9.2 -14.32 59.0 4.9 24.41 -49.2 -92.7	-18.2 - 144.5 - 14 68.6 9.9 24.3 - 2 - 48.8 - 93.8	36.6 45.38 86.2 19.6 24.06 47.0 -96.0	46.1 46.0 -1.0 94.2 24.3 23.79 45.6 -97.5	-55.5 -46.6 -1.1 102.1 29.0 25.5 -1.3 -44.1 -39.4	74.9 48.2 1.2 116.2 38.0 22.3 -2.2 40.2 103.4	-84.8 49.1 -1.2 122.1 42.3 21.5 -2.7 -37.5 -105.2 -04.9 -50.0 -1.1 127.3 46.4 20.6 -5.3 -34.5 -107.0	46.1 46.0 1.0 .2 -24.3 23.7 .9 48.8 -92.0	5 65.5 8.2 24.51 -48.9 -95.4	-1.2 118.4 59.4 22.0 -2.4 -39.3 -104.0
= 150° $\lambda = 60°$ t/ $l =$	10 ³ fq0	0 5.76- 7.54- 5.5 3.05 4.94- 1.74- 1.1 0.06- 9.49	73.6 84.8 -49.1 1.2 -38.2 -42.3 21.5 2.7 -40.4 -90.0	36.7 65.1 47.4 1.2 -19.7 57.6 22.9 1.7 47.7 -93.5	10.4 25.5 -46.0 1.1 -5.1 -25.5 25.7 -146.0 -9.0 -9.0	-18.4 36.6 45.3 .8 10.0 -19.6 24.0 .6 -49.2	-36.7 27.3 +4.8 3.6 19.9 -14.8 24.2 4.2 4.2 27.3 -1.4.8 18.2 4.4. 6.9 24.3 3.4.8 18.2 44.6 24.5 4.4 24.3	-72.9 9.2 44.3 .2 39.8 44.9 44.4 .1 49.6 -91.3	-31.0 -9.2 -4.4.32 59.0 4.9 4.41 -49.2 -92.7	-130.2 -18.2 -44.5 -4 68.6 9.9 24.32 -48.8 -93.8	169.2 -36.6 45.38 86.2 19.6 24.06 47.0 -96.0	-189.7 -46.1 -46.0 -1.0 94.2 24.3 23.79 45.6 -97.5	-210.4 -55.5 -46.6 -1.1 102.1 29.0 25.5 -1.5 -44.1 -39.4	-255.2 -74.9 -48.2 -1.2 116.2 38.0 22.3 -2.2 -40.2 -103.4	-274.8 -84.8 -49.1 -1.2 122.1 42.3 21.5 -2.7 -37.5 -105.2 1.06.8 -40.9 -50.0 -1.1 127.3 46.4 20.6 -3.3 -34.5 -107.0 1	2 46.1 46.0 1.0 .2 -24.3 23.7 .9 48.8 -92.0	44.43 65.3 8.2 24.31 48.9 -93.4	-260.4 -78.2 -48.5 -1.2 118.4 39.4 22.0 -2.4 -39.3 -104.0

TABLE 17.- Continued

CASCADE DOWNWASH TABLES FOR BLADE ANTLES OF $\beta_B = 90^{\rm o}$ to 165° (corresponding to stagger angles of λ = 0° to 75°)

AND PITCH RATIO OF $\frac{t}{l} = 2$ TO 0.5

	10 ³ fq0	123	\$ 6 E	\$ \$	-388	1,38	168	#T2 #22	124	1	145	1. 2.8	-39	717	423
1.0	10 ³ &qo 10 ³ £qo	-57.8 -85.8	. 4. E. E.	-165.4	-178.9	-176.3	-157.2	-139.5	-88.	17.5	20.4	124.9	-165.4	-145.2	92.2
t/1 =	10 ⁵ f ₇ 5	57.6	39.3	25.3	13.7		5.4°	-8.8					25.3	-7.3	48.8
	1038,0 1038,1 1038,2 1038,3 103t,0 103t,1 103t,2 103t,3	-18.3	28.6 28.6	7.65 5.0.1	81.7.		3.8% 3.0%	88 v.c.	₹. 2.		38.6	18.3	65.0	87.7	15.3
009	10 ³ f ₇ 1	-48 -47:												27.7	95.3
H ~	10 ³ f 70	-126.4 -103.6	1,000	16.0	8. F	142.7	190.0	200.0	213.7	182.5	153.9	4 5 2.0	16.0	200.6	4.86
i.	10 ³ g ₇ 3	-10	ر ه دُ	121	164	» r	o ₩,	ሳ ሳ	#	‡ ‡	ል ፈ	\a 9	ង	'n	Ŋ
150°	10 ³ g ₇₂	-21¢ -216	-213 -213 -213	203-	195	188	186	192	-199	200	-213	-216 -214	-203	-161	-216
8 8 11	10 ³ g ₇ 1	411 375	887	28.5	161	280	0 %	- 61	191-	3.₹	98 gg	123	202	-65	-342
	10 ³ 870	399	165	3 2 %	3	77.	2 2 2 2 2 3 2 3	55.59 50.73	-759	9,6	1,0 1,0 2,0	1,1±9	Я	542	-1,107
	xi~	.0.	٠ <u>٠</u> ٠;	igik	نن:	±-4-	'nÿ	6	٠.					러워	긔임
	10 ³ f _{q0}	-268.1	1979.0 1974.0	-247.6 -247.6	245.3	-247.1	-249.2 -252.5	-257.6 -263.4	-269.6	-276.6	-289.8	-298.2	-247.6	-253.0	-296.0
1.25	10 ⁵ g _Q 0 10 ⁵ f _Q 0	-76.3 -268.1 -87.6 -264.0	-97.2 -259.2 -104.8 -274.9	-114.4 -247.6 -114.8 -247.6	-117.9 -245.3	-117.4 -247.1	-115.6 -249.2	-108.0 -257.6 -101.3 -263.4	-92.1 -269.6	-65.9 -285.4	-48.5 -289.8	-5.1 -298.2	-114.4 4-247.6	-108.1 -253.0	-21.0 -296.0
t/1 = 1.25	10 ³ g ₉₀	23.8 -76.3 -268.1 19.9 -87.6 -264.0	-104.8	411-	-17.9	-117.	-15.6 -112.4	-108.0	-8.5	-65.20 6.00	-48.5 5.85	15.1	4.411-		
п	10 ³ g ₉₀	23.8 -76.3 19.9 -87.6	-104.8	8.0 -114.4	4.2 -117.9	1.3 -117.4	0 -115.6	-2.7 -108.0 -4.2 -101.3	-5.9 -92.1	-10.4 -65.9	-13.1 -48.5	-19.9 -5.1	4.4LL- 0.8	-108.1	-21.0
o t/1 =	03eyl 103ey2 103ey3 103ego	-88.4 20.5 23.8 -76.3 -84.6 29.2 19.9 -87.6	-79.1 36.5 16.4 -97.2 -72.1 42.7 13.1 -104.8	-54.6 51.4 8.0 -114.4 -74.6 51.4 8.0 -114.4	-35.9 56.2 4.2 -117.9	-22.6 57.5 2.7 -117.0 -11.5 58.2 1.3 -117.4	0 58.5 0 -115.6 11.5 58.2 -1.3 -112.4	22.8 57.5 -2.7 -108.0 33.9 56.2 -4.2 -101.3	1.56 2.5 5.4	63.9 47.6 -10.4 -65.9	72.1 42.7 -13.1 -48.5	88.4 20.5 -23.8 19.7	-54.6 51.4 8.0 -114.4	-2.2 -108.1	-17.5 -21.0
п	103fy1 103fy2 103fy3 103gq0	-88.4 20.5 23.8 -76.3 -84.6 29.2 19.9 -87.6	-79.1 36.5 16.4 -97.2 -72.1 42.7 13.1 -104.8	-54.6 51.4 8.0 -114.4 -74.6 51.4 8.0 -114.4	-35.9 56.2 4.2 -117.9	-22.6 57.5 2.7 -117.0 -11.5 58.2 1.3 -117.4	0 58.5 0 -115.6 11.5 58.2 -1.3 -112.4	22.8 57.5 -2.7 -108.0 33.9 56.2 -4.2 -101.3	1.56 2.5 5.4	63.9 47.6 -10.4 -65.9	72.1 42.7 -13.1 -48.5	88.4 20.5 -23.8 19.7	-54.6 51.4 8.0 -114.4	58.0 -2.2 -108.1	34.2 -17.5 -21.0
= 60° t/l =	103fy1 103fy2 103fy3 103gq0	4.2 -100.5 -88.4 20.5 23.8 -76.3 5.4 -81.6 -84.6 29.2 19.9 -87.6	5.7 -61.0 -79.1 56.5 16.4 -97.2 5.6 -59.4 -72.1 42.7 13.1 -104.8	4.55 -54.6 51.4 8.0 -114.4.4.5 5.2 -54.6 51.4 8.0 -114.4.4.4 8.0 -114.4.4 8.0 -116.4 8.0 -16.4 8.0	2.8 50.1 -33.9 56.2 4.2 -117.9	1.7 72.5 -22.6 57.7 5.1 -1.	0 115.6 0 58.5 0 -115.69 135.4 11.5 58.2 -1.3 -112.4	22.8 57.5 -2.7 -108.0 33.9 56.2 -4.2 -101.3	-3.6 181.3 44.6 54.3 -5.9 -92.1	-4.5 189.4 54.6 51.4 -6.0 -60.2 -5.0 193.7 63.9 47.6 -10.4 -65.9	-5.6 192.7 72.1 42.7 -13.1 -48.5	174.3 84.6 29.2 -19.9 -5.1 174.1 88.4 20.5 -23.8 19.7	5.2 -54.6 51.4 8.0 -114.4	19.0 58.0 -2.2 -108.1	81.0 34.2 -17.5 -21.0
$\lambda = 60^{\circ}$ t/ $l =$	103672 103873 103870 103871 103872 103873 103890	-140.5 4.2 -100.5 -88.4 20.5 23.8 -76.3 -137.9 5.4 -81.6 -84.6 29.2 19.9 -87.6	-134.8 5.7 -61.0 -79.1 56.5 16.4 -97.2 -131.7 5.6 -39.4 -72.1 42.7 13.1 -104.8	126.7 5.0 1.05 - 12.05 4.1.0 10.4 1.00 1.00 1.00 1.00 1.00 1.0	-121.7 2.8 50.1 -33.9 56.2 4.2 -117.9	-120.4 1.7 2.5 2.2.8 2.7 1.1.0.4 1.1.0.4 1.5 1.5 1.7.4	-119.5 0 115.6 0 58.5 0 -115.6 -119.6 -1.9 -115.4 11.5 58.2 -1.3 -112.4	-120.4 -1.7 153.6 22.8 57.5 -2.7 -108.0 -121.7 -2.8 169.1 33.9 56.2 -4.2 -101.3	-123.6 -3.6 181.3 44.6 54.3 -5.9 -92.1	-126.0	-131.7 -5.6 192.7 72.1 42.7 -13.1 -48.5	177.9 -7.4 174.3 84.6 29.2 -19.9 -5.1 -10.4 17.1 88.4 90.5 -23.8 19.7	126.0 4.5 5.2 -54.6 51.4 8.0 -114.4	120.2 -1.6 146.1 19.0 58.0 -2.2 -108.1	-5.6 183.0 81.0 34.2 -17.5 -21.0
= 60° t/l =	103672 103873 103870 103871 103872 103873 103890	261.4 -140.5 4.2 -100.5 -88.4 20.5 23.8 -76.3 233.4 -137.9 5.4 -81.6 -84.6 29.2 19.9 -87.6	205.7 - 134.8 5.7 - 61.0 - 79.1 56.5 16.4 - 97.2 178.5 - 131.7 5.6 - 39.4 - 72.1 42.7 13.1 - 104.8	155.6 -126.0 4.5 5.2 -35.6 51.4 8.0 -114.4 0.5.5 5.2 -35.6 51.4 8.0 -114.4 0.5 5.2 5.2 5.4 6.5 5.2 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5	74.5 -121.7 2.8 50.1 -33.9 56.2 4.2 -117.9	49.5 -120.4 1.7 72.5 -22.8 57.5 2.7 -117.0 24.7 -119.6 9 94.4 -11.5 58.2 1.5 -117.4	0 119.5 0 115.6 0 58.5 0 -115.6 -24.7 -119.6 9 135.4 11.5 58.2 -1.3 -112.4	-49.5 -120.4 -1.7 153.6 22.8 57.5 -2.7 -108.0 -74.5 -121.7 -2.8 169.1 33.9 56.2 -4.2 -101.3	-99.9 -123.6 -3.6 181.3 44.6 54.3 -5.9 -92.1	-125.6 -126.0 -4.5 189.4 54.6 51.4 -8.0 -80.2 -80.	-178.5 -131.7 -5.6 192.7 72.1 42.7 -13.1 -48.5		125.6 -126.0 4.5 5.2 -54.6 51.4 8.0 -114.4	-1.6 146.1 19.0 58.0 -2.2 -108.1	-5.6 183.0 81.0 34.2 -17.5 -21.0
$_{\rm B} = 150^{\rm o}$ $\lambda = 60^{\rm o}$ $\rm t/l =$	103fy1 103fy2 103fy3 103gq0	254.7 261.4 -140.5 4.2 -100.5 -88.4 20.5 23.8 -76.3 202.8 233.4 -137.9 5.4 -81.6 -84.6 29.2 19.9 -87.6	205.7 - 134.8 5.7 - 61.0 - 79.1 56.5 16.4 - 97.2 178.5 - 131.7 5.6 - 39.4 - 72.1 42.7 13.1 - 104.8	72. (171.0 -120. (17.0 -17.3) 4 (20 10.4 -110.) 7.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1	-46.1 95.9 -123.0 5.0 51.0 -14.0 7.3 7.9 -120.0 -26.3 74.5 -121.7 2.8 50.1 -33.9 56.2 4.2 -117.9	-146.8 49.5 -120.4 1.7 72.5 -22.8 5/.5 2.1 -117.0 -117.4 -11.5 58.2 1.3 -117.4 -117.4	-249.2 0 -119.5 0 115.6 0 58.5 0 -115.6 -301.9 -24.7 -119.6 9 135.4 11.5 58.2 -1.3 -112.4	-356.6 -49.5 -120.4 -1.7 153.6 22.8 57.5 -2.7 -108.0 -412.4 -74.5 -121.7 -2.8 169.1 33.9 56.2 -4.2 -101.3	-469.4 -99.9 -123.6 -3.6 181.3 44.6 54.3 -5.9 -92.1	-527.8 -125.6 -126.0 -4.5 189.4 54.6 51.4 -6.0 -60.2 -587.0 -151.8 -128.7 -5.0 193.7 63.9 47.6 -10.4 -65.9	-646.8 -178.5 -131.7 -5.6 192.7 72.1 42.7 -13.1 -48.5	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	125.6 -126.0 4.5 5.2 -54.6 51.4 8.0 -114.4	120.2 -1.6 146.1 19.0 58.0 -2.2 -108.1	183.0 81.0 34.2 -17.5 -21.0

CASCADE DOWNWASH TABLES FOR BLADE ANGLES OF $\beta_{\rm g} = 90^{\rm o}$ TO 165°

(corresponding to stagger angles of λ = 0° to 75°)

AND PITCH RATIO OF $\frac{t}{l} = 2 \text{ TO } 0.5$

ł			
	10 ³ £q0	2. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	-1,387
10	10 ² f _{y2} 10 ³ f _{y3} 10 ³ g _{q0} 10 ³ f		% 4
t/l = 0.5	10 ³ f ₇₃	4 K 2 K 2 K 2 K 2 K 2 K 2 K 2 K 2 K 2 K	-126
-t-	10 ³ £ 72	\$\\\4\\\4\\\4\\\4\\\4\\\4\\\4\\\4\\\4\\	114 -248
0	10 ³ f ₇ 1	\$2 C & C & C & C & C & C & C & C & C & C	-85
y = 60°	$10^3 g_{\gamma 0} \left[10^3 g_{\gamma 1} \right] 10^3 g_{\gamma 2} \left[10^3 g_{\gamma 3} \right] 10^3 t_{\gamma 0} \left[10^3 t_{\gamma 1} \right]$	213488888888 215 25 25 88 5 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	-196
	103873	24.24.24.24.24.24.24.24.24.24.24.24.24.2	72 IZ2
1500	10 ³ 8 ₇₂		-194
βs = 1	10 ³ g ₇₁	नेतेने	-262 -1,039
	10 ³ g _{y0}		-1,911
	×I∼	ٷؗٮٵؾ۬؋ٷؠؗٷۼٷ؞؊ٳڟ؞ ٷٵؾڹ؋ٷؠٷٷ؞؊ٳڟ؞	-12 리2
	10 ³ f qo		+9L-
5	10 ³ g ₄₀ 10 ³ f ₄₀		-135 -764 318 -473
1 = 0.75	$10^3 \epsilon_{\gamma 5} 10^3 \epsilon_{\rm q0} 10^3 \epsilon_{\rm q0}$	2014 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	-27.4 -135 . -109.4 318 .
	10 ³ f _{y2} 10 ³ f _{y3} 10 ³ g _{q0} 10 ³ f _{q0}	91.7 104.9 106.9 106.0 1	-135
t/1 =	$10^3 t_{\gamma 1} \ 10^3 t_{\gamma 2} \ 10^3 t_{\gamma 3} \ 10^3 \epsilon_{q_0} \ 10^3 t_{q_0}$	-127.9 91.7 55 -95.4 104.9 -10 -66.6 110.2 -71 -72.6 108.0 -128 105.6 109.1 -72 -72 -72 -72 -72 -72 -72 -72 -72 -72	-27.4 -135 . -109.4 318
· n	$10^3 t_{\gamma 0} 10^3 t_{\gamma 1} 10^3 t_{\gamma 2} 10^3 t_{\gamma 3} 10^3 \epsilon_{q 0} 10^3 t_{q 0}$	-37.6 -127.9 91.7 53 -70.2 -60.6 110.2 -71 -70.2 -23.6 106.0 -128 -83.5 114.7 89.1 -177 -81.1 50.5 89.7 -218 -60.6 105.6 71.3 -248 -60.6 105.6 71.3 -248 -60.6 105.6 71.3 -248 -60.6 105.6 71.3 -248 -22.5 135.8 16.1 -254 0 139.7 0 -224 135.8 -16.1 -176 45.2 125.8 -16.1 -176 45.2 125.8 -16.1 -176 45.2 125.8 -16.1 -176 45.2 125.8 -16.1 -176 45.2 126.8 -23.4 -113 60.6 -20.5 -20.7 125 83.3 -23.6 -100.9 36 70.2 -60.6 -110.9 36 77.6 -20.6 -110.9 36 77.6 -20.6 -110.9 36 77.6 -20.6 -110.9 355 77.6 -20.6 -110.9 355 77.6 -20.6 -110.9 355 77.6 -20.6 -110.9 36	129.7 -27.4 -135 -72.5 -109.4 318
= 60° t/l =	$10^3 \mathrm{g}_{73}$ $10^3 t_{\gamma 0}$ $10^3 t_{\gamma 1}$ $10^3 t_{\gamma 2}$ $10^3 t_{\gamma 3}$ $10^3 \mathrm{g}_{40}$ $10^3 t_{40}$	-77.6 -127.9 91.7 55 -70.2 -66.6 110.2 -71 -70.2 -66.6 110.2 -71 -81.3 50.5 89.1 -177 -81.1 50.5 89.1 -177 -81.2 124.8 35.4 -267 -22.5 135.8 151.3 -264 -22.5 135.8 151.3 -264 -22.5 135.8 151.1 -254 0 139.7 0 -224 0 139.7 0 -224 0 139.7 0 -224 0 139.7 0 -224 0 150.7 -254 0 150.8 -16.1 -176 0 150.7 -254 0 105.6 -10.1 -176 0 105.6 -10.1 -176 0 105.6 -10.1 -176 0 105.7 -254 0 106.9 335 0 127.9 -91.7 349 0 127.9 -91.7 349	36.4 1.29.7 -27.4 -135 65.8 -72.5 -109.4 318
$\lambda = 60^{\circ}$ t/ $\lambda =$	$10^3 g_{\gamma 2} \ 10^3 g_{\gamma 3} \ 10^3 f_{\gamma 0} \ 10^3 f_{\gamma 1} \ 10^3 f_{\gamma 2} \ 10^3 f_{\gamma 3} \ 10^3 g_{40} \ 10^3 f_{40}$	-128 - 37.6 - 127.9 91.7 53 - 101 - 55.7 - 60.6 110.2 - 71.6 - 10.6 110.2 - 71.6 - 10.6 110.2 - 71.7 - 60.6 110.2 - 71.7 - 60.6 110.2 - 71.7 - 60.6 110.2 - 71.7 - 60.6 110.2 - 71.7 - 60.6 110.2 - 71.7 - 60.6 110.2 - 71.7 - 60.6 110.2 - 71.7 - 60.6 110.2 - 20.6 110.	208 36.4 129.7 -27.4 -135 -186 65.8 -72.5 -109.4 318
= 60° t/l =	$10^3 \mathrm{gy_1} 10^3 \mathrm{gy_2} 10^3 \mathrm{gy_3} 10^3 \mathrm{f}_{\gamma_0} 10^3 \mathrm{f}_{\gamma_1} 10^3 \mathrm{f}_{\gamma_2} 10^3 \mathrm{f}_{\gamma_3} 10^3 \mathrm{g}_{0} 10^3 \mathrm{f}_{0}$	674 -281 -96 -128 -37.6 -127.9 91.7 55 562 -370 -77 -101 -55.7 -95.4 104.9 -10 564 -334 -50 -69 -70.2 -66.6 110.2 -71 565 -350 -7 11 -85.5 104.7 99.1 -177 566 -356 15 101 -73.6 80.7 89.1 -177 567 -356 16 145 -66.6 105.6 10.3 -248 522 -356 16 145 -66.6 105.6 10.3 -248 74 -356 16 145 -66.6 105.6 11.3 -264 74 -356 16 145 -66.6 105.6 11.3 -264 74 -357 -8 221 22.5 135.8 15.1 -254 75 -36 -16 199 45.2 124.8 -35.4 -157 75 -36 -36 15 102 73.6 80.7 -69.3 45 75 -36 -36 15 102 73.6 80.7 -69.3 45 568 -340 7 -33 81.1 50.5 -85.7 125 574 -286 -366 -106.0 80 575 -366 -106 108 80 576 -371 27 -102 73.6 80.7 -69.3 45 577 -29.4 -104.9 335 578 -364 -6 56 -110.9 335 579 -271 -104.9 335 571 -271 -971 -971 -971 -971 -971	-123 -355 -12 208 36.4 129.7 -27.4 -135 -595 -327 57 -186 65.8 -72.5 -109.4 318
= 150° $\lambda = 60^{\circ}$ $t/l =$	$10^3 g_{\gamma 0} \left[10^3 g_{\gamma 1} \right] 10^3 g_{\gamma 2} \left[10^3 g_{\gamma 3} \right] 10^3 f_{\gamma 0} \left[10^3 f_{\gamma 1} \right] 10^3 f_{\gamma 2} \left[10^3 f_{\gamma 3} \right] 10^3 g_{Q0} \left[10^3 f_{Q0} \right] $	-281 -96 -128 -77.6 -127.9 91.7 55 -310 -75 -101 -55.7 -104.9 -10 -354 -50 -69 -70.2 -66.6 110.2 -71 -356 -7 11 -85.5 104.0 -128 -356 -7 11 -85.5 104.0 -128 -356 -15 101 -73.6 80.7 69.3 -248 -356 -16 1145 -60.6 105.6 10.3 -248 -356 -16 1145 -60.6 105.6 11.3 -264 -357 -8 221 22.5 135.8 15.1 -254 -356 -16 119 45.2 124.8 -35.4 -254 -356 -16 119 45.2 124.8 -35.4 -115 -356 -16 1102 73.6 80.7 -69.3 45 -357 -26 -16 70.2 -66.6 -110.2 306 -358 -26 -110.2 306 -359 -274 37.6 -127.9 -91.7 349 -350 -36 -12 -36.6 -110.9 355 -351 -351 -352 -354 -104.9 355 -354 -357 -357 -357 -357 -328	-327 57 -12 208 36.4 129.7 -27.4 -135 -327 57 -186 65.8 -72.5 -109.4 318

TABLE 17.- Continued

CASCADE DOWNWASH TABLES FOR BLADE ANGLES OF $\beta_{B} = 90^{\rm o}$ TO $165^{\rm o}$

(corresponding to stagger angles of λ = $0^{\rm o}$ to $75^{\rm o})$

	10 ³ f _{q0}	-126.6	-112.6	-107.8	-101-6	-68 -7.	-98.4	9,5	-103.9	-107.9	-112.9	127.4	1.26.1	-147-1	-161.3	-170.2	-101.6	-105.4	-167.0
	10 ³ g _Q 0	-170.2	-166.7	-165.2	-163.6	-162.0	-163.1	-163.7	-165.2	-166.9	-168.8	7.1/1-	-175.7	-178.5	_	-182.9	-163.6	-165.9	-182.0 -167.0
t/1 = 1.5	10	9.0-				9:1		۲.								öδ	8.	ď	ġ.
(†	10 ³ £ ₇ 2	İ		88.3													81.5	79.7	8.48 8.48
	10 ³ r ₇ 1	-167.6	-132.8	-115.7	-82.1	165.4	-32.6	-16.3	16.3	32.6	0.6		98.8	115.7	132.8	150.2	-82.1	27.3	138.5
λ = 750	$^{10^3}r_{\gamma 0}$	-165.0	9.8	-55.2	9	0, 45 0, 00 0, 00 0 0 0	97.9	121.1	197.8	232.1	200	2027	373.3	10.00	116.7	519.4	9	220.5	459.0
	10 ³ g _{y3}	1		 		* 4.	1.5	٠.٠	7	-1.5	-5.t		1, 1,	-7.3	0.6-	-10.9	4.6	-1.2	9.6-
165°	10 ³ g _{y2} 10 ³ g _{y3}	-74.1	-63.1	-59.1 -55.8	-53.2	-52.1	-148.3	6.24-	0.74-	-148.3	9.64-	-71.1	55.8	-50.1	-63.1	-4:1	-53.2	-48.2	-65.0
β ₈ = 16	.03g ₇₁	118.2	88.9	63.6	52.1	20.1	8	10.0	-10.0	-8	Ŗ.:	0.14-	1,4	-7.9	-88.9	-102.9	52.1	-16.8	-93.5 -65.0
	103870	109.8	65.2	0.4 ₹.0	5.6	-17.7	-58.2	-79.2	-125.9	-148.1	-175.7	100-	2,4	-298.9	-339.1	133.6	2.6	-139.0	-354.0
	×i~	0	; -:	بَ م	ģ	v, K) 	÷.	٠'n	,0	9	- F	-œ	9	ø.	_	신감	니김	디감
																-			
	10 ³ f q0	7-60-7	-57.2	-55.5 • • • • • • • • • • • • • • • • • • •	-54.5	-53.9	-53.8	o. オー	-55.5	-1,3	-57.3	-59.1	7.19	-9:9	6.69-	-73.7	-5±.2	-55.5	-72.1
	5€	-93.2 -60.7	-91.8 -57.2	-91.3 -55.9 -90.9 -54.9	-90.6 -54.2	-90.7 -53.9	-90.8 -53.8	-91.0-12.0	-91.51 74.4	-92.3 -56.0	-92.8 -57.3	-93.3 -59.1	95 12 -01.2	-96.4-96.6	6.69- 1.16-	-99.0 -73.7	-90.6 -54.2	-92.0 -55.5	-98.4 -72.1
1 = 2.0	73 10 ³ 8 ₉₀ 10 ³ f	-93.2	.1 -91.8 -57.2	수 약 6.0	-8.6	1 -90.7 -53.9	-8.	-91.0		-92.3	.1 -92.8 -57.5	1 -95.3	27:12-01:2	1-96.4	-97.7	199.0 -73.7		0 -92.0 -55.5	1 -98.4 -72.1
	73 10 ³ 8 ₉₀ 10 ³ f	0.1 -93.2	.1 -91.8	수 약 6.0	0 -8.6	1 -90.7	1	091.0	0 -91.5	.1 -92.3	.1 -92.8	1	2.5	18	1 -97.7	1 -99.0	9.06-	-92.0	1 1.94
t/1 =	103e y1 103e y2 103e y3 103eg0 103e	47.0 0.1 -93.2	16.0 .1 -91.8	45.6	9.06- 0 6.44	14.7 - 1.1 - 90.7	4.4.	14.5 0 -91.0	4.5 0 -91.5	4.4	1 -92.8	4.7 .1 -95.5	1.5- 0 6.5	45.61 -96.4	1,6.01 -97.7	46.5 1 -99.0 47.0 1 -100.2	9.06- 0 6.44	0 -92.0	7:
	103e 11 103e 12 103e 103e 103e 103e	-92.2 47.0 0.1 -93.2	-75.2 46.0 .1 -91.8	-63.9 45.6 .1 -91.3 -54.6 45.3 0 -90.9	-45.4 44.9 0 -90.6	-36.5 44.71 -90.7	18.1 44.41 -90.8	-9.0 44.3 0 -91.0	9.0	16.1 44.4 .1 -92.3	27.2 44.5 .1 -92.8	36.3 4.7 .1 -93.3	15.4.4.9 0 4.24 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	63.9 45.61 -96.4	73.2 46.01 -97.7	1 -99.0	9.06- 0 6.44	14.3 0 -92.0	1 1.94
$= 75^{0} t/l =$	103e 11 103e 12 103e 103e 103e 103e	-91.2 -92.2 47.0 0.1 -93.2	-12.0 -02.0 40.0 .1 -92.4 -54.6 -73.2 46.0 .1 -91.8	-63.9 45.6 .1 -91.3 -54.6 45.3 0 -90.9	6.06- 0 6.44 4.54- 2	18.1 -36.5 t4.7 1 -90.7 x6.3 20.7 111.5 1 -90.7	18.1 44.41 -90.8	73.0 -9.0 44.3 0 -91.0	91.3 0 44.3 0 -91.3	128.5 18.1 44.4 .1 -92.3	147.2 27.2 44.5 .1 -92.8	165.9 36.3 44.7 .1 -93.5	185.0 45.4 44.9 0 18.7 18.7 18.7 18.7 18.7 18.7 18.7 18.7	224.2 63.9 45.61 -96.4	244.1 73.2 46.01 -97.7	82.6 46.5 1 -99.0 92.2 47.0 1 -100.2	9.06- 0 6.44 4.54- 2	15.0 44.3 0 -92.0	76.3 46.11
$\lambda = 75^{\circ}$ t/ $l =$	103e 11 103e 12 103e 103e 103e 103e	-32.8 2.9 -91.2 -92.2 47.0 0.1 -93.2	-30.1 2.0 -54.6 -73.2 46.0 .1 -91.8 -91.8	-29.1 1.6 -36.5 -63.9 45.6 .1 -91.3 -28.2 1.2 -18.3 -54.6 45.3 0 -90.9	-27.5 1.02 -45.4 44.9 0 -90.6	-27.0	-8.3 .3 2.6 -18.1 H1 -90.8	-26.2 .1 75.0 -9.0 44.3 0 -91.0	-86.1	-26.33 128.5 18.1 44.4 .1 -92.3	-26.65 147.2 27.2 4.5 .1 -92.8	-27.07 1165.9 36.3 44.7 .1 -95.3	-27.5 -1.0 185.0 45.4 44.9 0 -7.5 -8 5 1 5 2 6 7 7 8 7 9 6 4	-29.1 -1.6 224.2 63.9 45.6 1 -96.4	-30.1 -2.0 244.1 73.2 46.01 -97.7	-31.3 -2.4 264.2 82.6 46.51 -99.0 -32.8 -2.9 284.6 92.2 47.01 -100.2	-27.5 1.02 -45.4 44.9 0 -90.6	122.0 15.0 44.3 0 -92.0	251.0 76.3 46.11
$= 75^{0} t/l =$	103e 11 103e 12 103e 103e 103e 103e	-32.8 2.9 -91.2 -92.2 47.0 0.1 -93.2	-30.1 2.0 -54.6 -73.2 46.0 .1 -91.8 -91.8	-29.1 1.6 -36.5 -63.9 45.6 .1 -91.3 -28.2 1.2 -18.3 -54.6 45.3 0 -90.9	-27.5 1.02 -45.4 44.9 0 -90.6	-27.0	-8.3 .3 2.6 -18.1 H1 -90.8	-26.2 .1 75.0 -9.0 44.3 0 -91.0	-86.1	-26.33 128.5 18.1 44.4 .1 -92.3	-26.65 147.2 27.2 4.5 .1 -92.8	-27.07 1165.9 36.3 44.7 .1 -95.3	-27.5 -1.0 185.0 45.4 44.9 0 -7.5 -8 5 1 5 2 6 7 7 8 7 9 6 4	-29.1 -1.6 224.2 63.9 45.6 1 -96.4	-30.1 -2.0 244.1 73.2 46.01 -97.7	-31.3 -2.4 264.2 82.6 46.51 -99.0 -32.8 -2.9 284.6 92.2 47.01 -100.2	-27.5 1.02 -45.4 44.9 0 -90.6	-9.0 -26.33 122.0 15.0 44.3 0 -92.0	-30.7 -2.2 251.0 76.3 46.11
= 165° $\lambda = 75^{\circ}$ $t/l =$	103e y1 103e y2 103e y3 103eg0 103e	56.3 58.5 -32.8 2.9 -91.2 -92.2 47.0 0.1 -93.2	35.6 45.4 -30.1 2.0 -54.6 -75.2 46.0 .1 -92.8	22.5 39.2 -29.1 1.6 -36.5 -63.9 45.6 .1 -91.3 11.5 33.2 -28.2 1.2 -18.3 -54.6 45.3 0 -90.9	6 27.4 -27.5 1.02 -45.4 44.9 0 -90.6	-10.5 21.8 -27.0 .7 181 -36.5 44.71 -90.7 a 27.0 14.5 -1 -90.7	-22.2 10.8 -26.3 -3 4.6 -18.1 4.41 -90.8	-45.2 5.4 -26.2 .1 75.0 -9.0 th.3 0 -91.0	-54.4 0 -26.1 0 91.3 0 44.5 0 -91.5 6.0 44.5 0 -91.5 6.0 44.5 0 -91.5	-77.6 -10.8 -26.3 3 128.5 18.1 14.4 .1 -92.3	-89.9 -16.3 -26.65 147.2 27.2 th.5 1 -92.8	-102.7 -21.8 -27.0 7 165.9 36.3 44.7 .1 -93.3	-116.0 -27.4 -27.5 -1.0 185.0 45.4 44.9 0 -54.2 45.4 44.9 0 -54.2 45.	-130.1 -23.2 -20.2 -1.5 224.2 53.9 45.6 1 -96.4	-160.7 -45.4 -30.1 -2.0 244.1 73.2 46.01 -97.7	-177.3 -51.8 -31.3 -2.4 264.2 82.6 46.5 1 -99.0 -195.2 58.5 -32.8 -2.9 284.6 92.2 47.0 1 -100.2	-27.5 1.02 -45.4 44.9 0 -90.6	-26.33 122.0 15.0 44.3 0 -92.0	-2.2 251.0 76.3 46.11

CASCADE DOWNWASH TABLES FOR BLADE ANGLES OF β_{g} = $90^{\rm o}$ to $165^{\rm o}$

(corresponding to stagger angles of λ = 0° to 75°)

	8	40-	<u> т</u>	2.7	00	-	۲.	'nύ	u oʻ	wr	۵.	۵.	9	9
	10 ³ r _{q0}	-144.1	-222.4 -317.3 -289.1	-268.2	-247.0 -246.0	-251.4	-308.7	3.756.5	-157. -586.9			-268.2	3 -296.6	77.5
0.	10 ³ gc	-323.7 -351.2	-374.5 -374.5 -376.5	-376.0 -374.8	-374.2	-377.7	-385.8 -391.0	-396.0 -396.8	-386.7 -357.9	-299.2	-85.6 59.9	-376.0	-388.8	-169.0 -712.6
t/l = 1.0	10 ³ f ₇ 3	l .	7.9		-5.8 -6.8	-1.5	 		č.	-7.9	-45.2 -76.1	-3.5	2.5	-29.5
+	10 ³ £ 72	125.4	185.4	189.4	185.7	182.9	182.9	185.7 187.6				189.4	63.1 183.3	
	10 ³ £ y1	-358.1 -320.6	853.0 227.0	150.1	-113.7	-57.8	75.6	13.7	190.1 227.4	263.0	320.6	-190.1	63.1	304.5 169.0
λ = 75°	10 ² f yo]	352.5	-222.5 -294.4 174.5 -151.5 -263.0 185.4 -78.5 -227.4 189.2	44	146.8 223.8	302.1 381.2	161.1 7.25.2	623. 1	766.9 812.7	825.2	726.8	7.5	515.0	778.0
	.0 ³ g ₇₃	88.9 4.48	5.75 4 1-8	% 4.9.8 4.9.	18.6	5.7	-5.1	-18.6 -26.6	-35.4 -4.8	-59.7	.48 .4.0.	35.4	9.6-	4.17-
	$10^3 g_{\gamma 1} \left[10^3 g_{\gamma 2} \right] 10^3 g_{\gamma 3} \left[10^3 t_{\gamma 0} \right] 10^3 t_{\gamma 1} \left[10^3 t_{\gamma 2} \right] 10^3 t_{\gamma 3} \left[10^3 g_{Q0} \right] $	-296.7 -263.8	-250.8 -200.7 -175.8	-156.0		-118.6	-118.6	1,230.3	-156.0	200.7	.863.8 .7.86.7	-156.0		-241.3
3 = 165°	0 ³ β _{γ1}]	386.8 -296.7 328.0 -263.8	273.9 225.2 182.4	14.7	8 2.6.9	80	58.0	8 9 9 9 8	-1#4.7 -182.4	-225.2	788.0	144.7	-43.7 -121.0	-231.2
β.	1038,00	329.5 259.7	194.4	ਹ ਹ ਹ ਹ ਹ ਹ ਰ ਹ	-85.2	-199.4 -263.1			-740.6			21.2	-384.0	-1,295.0 -291.2 -241.3 -77.4
	×I∼	.05	ننة	بقن	<u>ب</u> -∓	±. v.	٠. ترة	6.	£-60			512	72	리임
		- nn	J 0 60	0.00	+ 0	~ 0	٠٠.٠	01.0	~~	10.	- 10 -1			+
	10 ² f _{q0}		-182.1 -170.0 -160.8	-154.0	-147.4	-148.7	159.6 -168.6	-180.2	-214.7	267.5		-154.0	-163.0	-313.4
1.25	10 ³ Eq0 10 ³ fq0	-246.0 -216.3 -245.2 -197.3	-243.1 -182.1 -241.2 -170.0 -239.3 -160.8	-237.8 -154.0 -236.8 -149.6	-236.5 -147.4 -236.7 -146.9	-257.3 -148.7 -239.0 -153.0	-241.6 159.6 -245.6 -168.6	-248.1 -180.2 -251.5 -194.9	-255.4 -214.7		-246.1 -341.5 -223.9 -390.1	-237.8 -154.0	-243.2 -163.0	-256.2 -313.4
t/l = 1.25	10 ² f ₇₃ 10 ³ g ₉₀ 10 ³ f ₉₀	-246.0 -245.2		237.8	-236.5	-237.3	-241.6 -245.6	1.4 -248.1 -180.2	-255-4	2.2 -259.7 -267.5	-246.1 -223.9	-2.1 -237.8 -154.0	.8 -245.2 -163.0	
t/l = 1.25	$10^{3} \epsilon_{72} 10^{3} \epsilon_{73} 10^{3} \epsilon_{40} 10^{3} \epsilon_{40}$	4.0 -246.0 5.245-2	-1.5 -243.1 -2.2 -241.2 -2.4 -243.3	-2.1 -237.8	-1.4 -236.5	0 -237.3	.4 -241.6 .9 -245.6	1.4 -248.1	2.1 -255.4	2.2 -259.7	5 -246.1	-2.1 -237.8	φ.	1.0 -256.2
	1 10 ³ f y2 10 ³ f y3 10 ³ g g0 10 ³ f	242.6 123.4 4.0 -246.0 218.6 124.5 .5 -245.2	195.9 125.9 -1.5 -245.1 169.1 122.5 -2.2 -241.2 141.2 120.8 -2.4 -239.3	119.7 119.5 -2.1 -257.8	-71.4 116.8 -1.4 -236.5 -47.4 115.99 -236.7	-23.7 115.54 -237.3 0 115.1 0 -239.0	25.7 115.5 .4 -241.6	71.4 116.8 1.4 -248.1 95.4 117.9 1.8 -251.5	119.7 119.3 2.1 -255.4	169.1 122.5 2.2 -259.7	218.6 124.55 -246.1 242.6 123.4 -4.0 -225.9	119.7 - 2.21 -257.8		-256.2
$\lambda = 75^{\circ}$ t/t = 1.25	1 10 ³ f y2 10 ³ f y3 10 ³ g g0 10 ³ f	242.6 123.4 4.0 -246.0 218.6 124.5 .5 -245.2	195.9 125.9 -1.5 -245.1 169.1 122.5 -2.2 -241.2 141.2 120.8 -2.4 -239.3	119.7 119.5 -2.1 -257.8	-71.4 116.8 -1.4 -236.5 -47.4 115.99 -236.7	-23.7 115.54 -237.3 0 115.1 0 -239.0	25.7 115.5 .4 -241.6	71.4 116.8 1.4 -248.1 95.4 117.9 1.8 -251.5	119.7 119.3 2.1 -255.4	169.1 122.5 2.2 -259.7	218.6 124.55 -246.1 242.6 123.4 -4.0 -225.9	119.7 - 2.21 -257.8	9. 9.5π 6.	9124.1 1.0 -256.2
= 75°	1 10 ³ f y2 10 ³ f y3 10 ³ g q0 10 ³ f	24.5 -239.2 -242.6 123.4 4.0 -246.0 28.6 -192.0 -218.6 124.5 .5 -245.2	25.5 -144.7 -195.9 125.9 -1.5 -245.1 18.9 -97.0 -169.1 122.5 -2.2 -241.2 14.7 4.0 1 -144.2 120.8 -2.4 -239.3	11.2 1.6 119.7 119.3 -2.1 -2.7.8 8.5 46.0 -95.4 117.9 -1.8 -2.56.8	6.0 93.7 -71.4 116.8 -1.4 -236.5 3.9 141.9 -47.4 115.99 -236.7	1.9 189.9 -23.7 115.54 -237.3 0 239.0 0 115.1 0 -239.0	6.1.9 289.0 23.7 115.5 4.0 240.4 47.4 115.9 9 -245.6	-6.0 590.9 71.4 116.8 1.4 -248.1 -8.5 442.3 95.4 117.9 1.8 -251.5	11.2 494.8 119.7 119.3 2.1 -255.4	18.9 597.9 169.1 122.5 2.2 -259.7	-25.5 044.5 125.9 12.5 -246.1 -28.6 683.3 218.6 124.55 -246.1 -34.5 709.1 242.6 123.4 -4.0 -225.9	11.2 -1.6 -119.7 119.3 -2.1 -237.8	-3.3 323.0 39.9 115.6 .8	660.0 201.9 124.1 1.0 -256.2
λ = 75°	1 10 ³ f y2 10 ³ f y3 10 ³ g q0 10 ³ f	-135.2 34.5 -239.2 -242.6 123.4 4.0 -246.0 -120.5 28.6 -192.0 -218.6 124.5 .5 -245.2	-108.5 25.5 -144.7 -195.9 125.9 -1.5 -245.1 -98.4 18.9 -97.0 -169.1 122.5 -52.2 -241.2 -0.1 14.7 -40.1 -144.2 -170.8 -2.4 -259.5	-85.7 11.2 -1.6 -119.7 119.5 -2.1 -237.8 -78.9 8.5 46.0 -95.4 117.9 -1.8 -236.8	-75.3 6.0 93.7 -71.4 116.8 -1.4 -236.5 -72.8 3.9 141.9 -47.4 115.99 -236.7	-71.3 1.9 189.9 -23.7 115.54 -27.3 -70.8 0 239.0 0 115.1 0 -239.0	-71.3 -1.9 289.0 23.7 115.5 .4 -241.6 -72.8 -3.9 340.4 47.4 115.9 .9 -245.6	-75.3 -6.0 590.9 71.4 116.8 1.4 -248.1 -78.9 -8.5 442.3 95.4 117.9 1.8 -251.5	-83.7 -11.2 494.8 119.7 119.3 2.1 -255.4 co. 1.4.7 1 144.01.20.8 2.4 -258.7	-98.4 -18.9 597.9 159.1 122.5 2.2 -259.7	-100.5 -25.5 04.0 125.5 125.5 1.0 -25.0 1.0 -2	-83.7 11.2 -1.6 -119.7 119.3 -2.1 -237.8	-72.3 -3.3 323.0 39.9 IL5.6 .8	660.0 201.9 124.1 1.0 -256.2
= 75°	1 10 ³ f y2 10 ³ f y3 10 ³ g q0 10 ³ f	195.9 -135.2 34.5 -239.2 -242.6 123.4 4.0 -246.0 167.8 -120.5 28.6 -192.0 -218.6 124.5 .5 -245.2	142.6 -108.3 23.5 -144.7 -193.9 123.9 -1.5 -243.1 120.0 -94.1 18.9 -97.0 -169.1 122.5 -22.2 -241.2 20.1 -00.1 14.7 -10.1 114.9 1130.8 -2.4 -294.2	80.4 -83.7 11.2 1.6 119.7 119.3 -2.1 -237.8 62 9 -78.9 8.5 46.0 -95.4 117.9 -1.8 -236.8	46.4 -75.3 6.0 93.7 -71.4 116.8 -1.4 -236.5 7 70.5 -75.8 3.9 141.9 -47.4 115.99 -236.7	15.1 -71.3 1.9 189.9 -23.7 115.54 -27.3 0 -239.0 0 115.1 0 -239.0	-15.1 -7.3 -1.9 289.0 23.7 115.5 4.0.4 -241.6 -30.5 -72.8 -3.9 340.4 47.4 115.9 9 -9 -245.6	-46.4 -75.3 -6.0 590.9 71.4 116.8 1.4 -248.1 -65.9 -78.9 -8.5 442.3 95.4 117.9 1.8 -251.5	-80.4 -83.7 -11.2 494.8 119.7 119.3 2.1 -255.4 co. 1 co. 1 11.7 54.7 1 114. 2 120.8 2.4 -258.7	-120.0 -98.4 -13.9 59.7 1 14.11.22.5 2.2 -259.7	142.0 -100.5 -25.5 04.5 139.5 125.5 1.5 -26.5 1.6 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8	80.4 -85.7 11.2 -1.6 -119.7 119.5 -2.1 -257.8	-25.5 -72.3 -3.3 323.0 39.9 II5.6 .8	660.0 201.9 124.1 1.0 -256.2
= 165° \ \lambda = 75°	10^{7} gro 10^{3} gr ₂ 10^{3} gr ₂ 10^{3} gr ₃ 10^{3} gr ₂ 10^{3} gr ₃ 10^{3} gr ₃ 10^{3} gr ₃ 10^{3} gr ₄ 10^{3} gr ₄	175.5 195.9 -135.2 34.5 -239.2 -242.6 123.4 4.0 -246.0 138.3 167.8 -120.5 28.6 -192.0 -218.6 124.5 .5 -245.2	142.6 -108.3 23.5 -144.7 -193.9 123.9 -1.5 -243.1 120.0 -94.1 18.9 -97.0 -169.1 122.5 -22.2 -241.2 20.1 -00.1 14.7 -10.1 114.9 1130.8 -2.4 -294.2	7.8 8.7 - 1.8 - 1.	-54.6 46.4 -75.3 6.0 93.7 -71.4 116.8 -1.4 -236.5 -85.9 30.8 3.9 141.9 47.4 115.9 -9 -236.7	-118.5 15.1 -71.3 1.9 189.9 -23.7 115.54 -277.3 -153.0 0 115.1 0 -279.0	-189.8 -15.1 -71.3 -1.9 289.0 23.7 115.5 .4 -241.6 -283.6 -30.5 -72.8 -3.9 340.4 47.4 115.9 .9 -245.6	273.0 46.4 -75.3 -6.0 390.9 71.4 116.8 1.4 -248.1 300.7 -60.9 -78.9 18.5 442.3 95.4 117.9 1.8 -251.5	275.5 -80.4 -83.7 -11.2 494.8 119.7 119.3 2.1 -255.4 258.7	507.5 - 120.0 - 98.4 - 18.9 597.9 1691 122.5 2.2 - 259.7 1691 122.5 2.5 - 259.7 1691 122.5 2	-100.5 -25.5 04.0 125.5 125.5 1.0 -25.0 1.0 -2	6.8 80.4 -83.7 11.2 -1.6 -119.7 119.3 -2.1 -237.8	-72.3 -3.3 323.0 39.9 IL5.6 .8	201.9 124.1 1.0 -256.2

TABLE 17.- Concluded

CASCADE DOWNWASH TABLES FOR BLADE ANGLES OF $~\beta_{B}$ = 90° TO 165°

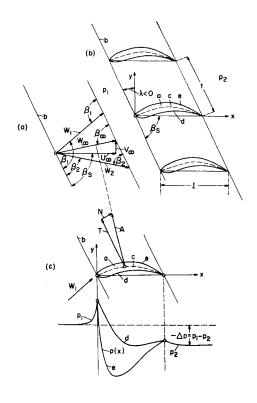
(corresponding to stagger angles of λ = 0° to 75°)

AND PITCH RATIO OF $\frac{t}{l} = 2 \text{ TO } 0.5$

	,																
	10 ³ £ ₇₀	-1,216	1,301 1,331	-1,360 -1,402	49,1-	1,1	-1,969	1,20	1,1 3,2 3,5	-1,066	55	-597	マナ マキ	-410	-1,402	-1,753	4.
0.5	10 ³ g ₇₀	64.5		-650.1 -834.9	1,047.1	1,261.1	-1,145.5	-316.7	85.2 20.0	366.1	398.7	277.8	57.50 79.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40	¥28.5	-834.9	-61.8	380.0
t/1 =	10 ³ £ ₇ 3	42.8 148.9	256.3 249.0	118.5	455.9	272.1	142.8		-272.4	-433.9	-418.5	-349.2	-256.3 -148.9	-42.8	0.9#4	-231.0	-220.5
	$10^3 t_{\gamma 0} 10^3 t_{\gamma 1} 10^3 t_{\gamma 2} 10^3 t_{\gamma 3}$	-294.7	-196.2	-28 -1 -1 -1	215.7	197.7	609.1	68	357.3	25.7	188		1.86.1.96.12.12.12.12.12.12.12.12.12.12.12.12.12.	-294.7	96.1	542.5	287.0 -217.5 -220.5
750	10^{7} r $_{\gamma1}$	-259.7	-288.5 -289.7	-281.0	-239.8		6.62-			239.8	88 98.0	289.7	88	259.7	-265.7	128.1	287.0
۲ = ۲	10 ³ £ 70	-583.9	-285.6 -108.4	88.1 5.5.5	537.5	963.5		476.5			163.5		166.0	6.0	303.5	318.0	194.0
	.0 ³ 873	-367.9 -370.6	-337.5	•			109.6	-109.6	125.6	8.66	177.6	272.4	377.5	367.9	-68.3	-147.5	353.0
1650	10 ³ 872	-367.7			-780.7	-820.1	2.1년 2.0 2.0	-82 -23 -23 -33 -33 -33 -33 -33 -33 -33 -3	-820.1 -811.8	-780.7	-(20-7 -674-7		-527.6 -148.5	-367.7	-736.5	821.0	-502.0
β = 1	10 ³ 8 ₇₁	1,265	1,092	<u>4</u> 8	919	<u>28</u> 2	đơ S	ਨ੍ਹੇ	-1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1	-676	<u> </u>	-1,001	1,092	-1,265	<u>%</u>	-33I	-2,755 -1,122 -502.0
	10 ³ 870	1,313	488 779	125	-112	-455 -973	-1,560	-2,358	-2,459	-2,418	-2,505	-2,598	-2,715 -2,839	-2,940	190	-2,415	-2,755
	xi2	°.	.1. 15.	ui gi	, w	ئ⊶	÷.		• %	١٠٠١	Ċω	٣ċ	ن ۾		시간	12	ដាង
														_			
	10 ³ f _{q0}				-555.9				-785.3	-1,055.4	-1,115.2	-950.6	-78+.8	6.754-	1 .409-	-736.0	-730.0
.75		2.99.2 -307.8	-406.6 -495.6	-567.1 -618.9	-652.5	-672.6 -682.8	9.069-	-687.7	2.45.4	-367.8	108.1	324.0	168.8 543.1	566.5	-618.9 -604.4	-659.4 -736.0	499.8 -730.0
t/1 = 0.75		279 -199.2 273 -307.8	241 -406.6 187 -495.6	126 -567.1 70 -618.9	29 -652.5	6 -672.6 -2 -682.8	-3 -690.6	3 -687.7	2 -5-10-8 -5-10-10-10-10-10-10-10-10-10-10-10-10-10-	-29 -367.8	-126 -136.0	-187 324.0	-241 468.8 -273 543.1	-279 566.5	70 -618.9	3 -659.4	-25t t99.8
t/1 = 0.75		-109.4 279 -199.2 -27.5 275 -307.8	58.0 241 -406.6 143.2 187 -495.6	216.4 126 -567.1	308.0 29 -652.5	326.1 6 -672.6 332.0 -2 -682.8	332.9 -3 -690.6	332.9 3 -687.7	352.0 2 -646.8	308.0 -29 -367.8	272.5 -70 -156.0	143.2 -187 324.0	58.0 -241 468.8	-109.4 -279 566.5	272.5 70 -618.9	4-659-	29.0 -254 499.8
t/1 =	$10^3 t_{\gamma 1} 10^3 t_{\gamma 2} 10^3 t_{\gamma 3} 10^3 t_{90} 10^3 t_{90}$	-327.5 -109.4 279 -199.2 -343.9 -27.5 275 -307.8	-351.2 58.0 241 -406.6 -349.4 143.2 187 -495.6	-333.5 216.4 126 -567.1 -302.6 272.5 70 -618.9	-257.4 308.0 29 -652.5	-200.7 326.1 6 -672.6 -136.5 332.0 -2 -682.8	-68.9 332.9 -3 -690.6	68.9 332.9 3 -687.7	136.5 332.0 2 -646.8 200.7 326.1 -6 -544.4	257.4 308.0 -29 -367.8	333.3 216.4 -126 108.1	349.4 143.2 -187 324.0	351.2 58.0 -241 468.8	327.5 -109.4 -279 566.5	-302.6 272.5 70 -618.9	3 -659.4	-25t t99.8
0	$10^3 t_{\gamma 1} \ 10^3 t_{\gamma 2} \ 10^3 t_{\gamma 3} \ 10^3 g_{40}$	-455.8 -327.5 -109.4 279 -199.2 -380.0 -343.9 -27.5 273 -307.8	~295.8 - 551.2 58.0 241 -406.6 -203.2 - 349.4 143.2 187 -495.6	-99.5 -333.5 216.4 126 -567.1 13.7 -302.6 272.5 70 -618.9	137.7 -257.4 308.0 29 -652.5	271.2 -200.7 326.1 6 -572.6 409.8 -136.5 332.0 -2 -682.8	552.8 -68.9 332.9 -3 -690.6	825.5 68.9 332.9 3 -687.7	919.8 136.5 332.0 2 -646.8 945.8 200.7 326.1 -6 -544.4	882.6 257.4 308.0 -29 -367.8	333.3 216.4 -126 108.1	374.8 349.4 143.2 -187 324.0	233.6 351.2 58.0 -241 468.8	88.5 327.5 -109.4 -279 566.5	13.7 -302.6 272.5 70 -618.9	.8 332.4 3 -659.4	200.0 349.9 29.0 -254 499.8
= 75° t/l =	$10^3 t_{\gamma 1} \ 10^3 t_{\gamma 2} \ 10^3 t_{\gamma 3} \ 10^3 g_{40}$	-75.2 -455.8 -327.5 -109.4 279 -199.2 4.1 -380.0 -343.9 -27.5 273 -307.8	74.3 -295.8 - 351.2 58.0 241 -406.6 121.8 -203.2 - 349.4 143.2 187 -495.6	143.3 -99.5 -333.3 216.4 126 -567.1 136.2 13.7 -302.6 272.5 70 -618.9	137.7 -257.4 308.0 29 -652.5	271.2 -200.7 326.1 6 -572.6 409.8 -136.5 332.0 -2 -682.8	24.3 552.8 -68.9 532.9 -3 -690.6	-24.5 825.5 68.9 332.9 3 -687.7	-49.9 919.8 136.5 332.0 2 -646.8 -80.0 945.8 200.7 326.1 -6 -544.4	-111.1 682.6 257.4 308.0 -29 -367.8	-136.2 741.2 302.6 272.5 -70 -156.0 -143.3 558.5 333.3 216.4 -126 108.1	374.8 349.4 143.2 -187 324.0	-74.3 233.6 351.2 58.0 -241 468.8 -4.1 144.7 343.9 -27.5 -27.3 543.1	75.2 88.5 327.5 -109.4 -279 566.5	-302.6 272.5 70 -618.9	114.8 332.4 3 -659.4	-50.8 200.0 349.9 29.0 -254 499.8
$\lambda = 75^{\circ}$ t/ $l =$	$10^3 t_{\gamma 1} \ 10^3 t_{\gamma 2} \ 10^3 t_{\gamma 3} \ 10^3 g_{40}$	144.9 4.1 -380.0 -343.9 -27.5 279 -199.2	-484.5 74.3 -295.8 -351.2 58.0 241 -406.6 -470.9 121.8 -203.2 -349.4 143.2 187 -495.6	1458.3 145.3 -99.5 -333.3 216.4 126 -567.1 136.2 136.2 13.7 -302.6 272.5 70 -618.9	-340.5 111.1 137.7 -257.4 308.0 29 -652.5	-296.8 80.0 271.2 -200.7 326.1 6 -672.6 -264.8 49.9 409.8 -136.5 332.0 -2 -682.8	246.5 24.3 552.8 -68.9 332.9 -3 -690.6	-240.6 092.9 025.0 032.9 -24.5 255.5 68.9 352.9 5 -687.7	-264.8 -49.9 919.8 136.5 332.0 2 -646.8 -266.8 -266.8 -266.8 -267.1 -6 -544.4	-340.5 -111.1 882.6 257.4 308.0 -29 -367.8	-391.2 -136.2 741.2 302.6 272.5 -70 -136.0 -438.3 -143.3 558.5 333.3 216.4 -126 108.1	-470.9 -121.8 374.8 349.4 145.2 -187 324.0	-484.5 -74.3 233.6 351.2 58.0 -241 468.8 -474.9 -4.1 144.7 343.9 -27.5 -273 543.1	-446.4 75.2 88.5 327.5 -109.4 -279 566.5	-391.2 136.2 13.7 -302.6 272.5 70 -618.9 ·	-41.2 889.0 114.8 332.4 3 -659.4	-50.8 200.0 349.9 29.0 -254 499.8
= 165° $\lambda = 75^{\circ}$ $t/l =$	$10^3 \mathrm{g}_{\gamma 1} \ 10^3 \mathrm{g}_{\gamma 2} \ 10^3 \mathrm{g}_{\gamma 3} \ 10^3 \mathrm{f}_{\gamma 0} \ 10^3 \mathrm{f}_{\gamma 1} \ 10^3 \mathrm{f}_{\gamma 2} \ 10^3 \mathrm{f}_{\gamma 3} \ 10^3 \mathrm{g}_{40}$	739.8 446.4 -75.2 455.8 -327.5 -109.4 279 -199.2 672.71-474.9 4.1 -380.0 -345.9 -27.5 27.5 27.5 27.8	598.9 -484.5 74.3 -295.8 -351.2 58.0 241 -406.6 517.7 -470.9 121.8 -203.2 -349.4 143.2 187 -495.6	4.52.2 - 4.58.3 143.3 - 99.5 - 533.3 216.4 126 - 567.1 345.3 - 591.2 136.2 13.7 - 302.6 272.5 70 - 618.9	262.1 -340.5 111.1 137.7 -257.4 308.0 29 -652.5	186.5 -296.8 80.0 271.2 -200.7 326.1 6 -572.6 119.0 -264.8 49.9 409.8 -136.5 332.0 -2 -682.8	58.0 -246.5 24.3 552.8 -68.9 532.9 -3 -690.6	-58.0 -246.5 -24.3 825.5 68.9 332.9 3 -687.7	-119.01 - 264.8	-262.1 -340.5 -111.1 882.6 257.4 308.0 -29 -367.8	.345.3 -391.2 -136.2 741.2 302.6 272.5 -70 -136.0 432.2 -438.3 -143.3 558.5 333.3 216.4 -126 108.1	517.7 -470.9 -121.8 374.8 349.4 143.2 -187 324.0	598.9 -484.5 -74.3 233.6 351.2 58.0 -241 468.8 672.7 -474.9 -411 144.7 343.9 -27.5 -273 543.1	-739.8 -446.4 75.2 88.5 327.5 -109.4 -279 566.5	345.3 -391.2 136.2 13.7 -302.6 272.5 70 -618.9	-98.0 -257.5 -41.2 889.0 114.8 332.4 3 -659.4	-50.8 200.0 349.9 29.0 -254 499.8
$165^{\circ} \qquad \lambda = 75^{\circ} \qquad t/l =$		657.2 739.8 446.4 -75.2 455.8 -327.5 -109.4 279 -199.2 543.9 672.7 -1474.9 4.1 -380.0 -343.9 -27.5 273 -307.8	-484.5 74.3 -295.8 -351.2 58.0 241 -406.6 -470.9 121.8 -203.2 -349.4 143.2 187 -495.6	202.0 432.2 +438.3 143.3 -99.5 -333.3 216.4 126 -567.1 86.2 345.3 -391.2 136.2 13.7 -302.6 272.5 70 -618.9	-31.7 262.1 -340.5 111.1 137.7 -257.4 308.0 29 -652.5	-152.9 186.5 -296.8 80.0 271.2 -200.7 326.1 6 -672.6 -280.1 119.0 -264.8 49.9 409.8 -136.5 332.0 -2 -682.8	-422.5 58.0 -246.5 24.3 552.8 -68.9 332.9 -3 -690.6	-783.0 -58.0 -246.5 -24.3 825.5 68.9 332.9 3 -687.7	-1,023.3 -119.0 -264.8 -49.9 919.8 136.5 332.0 2 -646.8 -1.300.2 -186.5 -296.8 -80.0 945.8 200.7 326.1 -6 -544.4	-1,577.6 -262.1 -340.5 -111.1 882.6 257.4 308.0 -29 -367.8	-1,805.8 -345.3 -391.2 -136.2 741.2 302.6 272.5 -70 -136.0 -1.936.9 -432.2 -438.3 -143.3 558.5 333.3 216.4 -126 108.1	-1,986.0 -517.7 -470.9 -121.8 374.8 349.4 143.2 -187 324.0	11,982.6 -598.9 -484.5 -74.3 233.6 351.2 58.0 -241 468.8 1 050.9 -672.7 444.9 -27.5 -273 543.1	-1,917.5 -739.8 -446.4 75.2 88.5 327.5 -109.4 -279 566.5	-391.2 136.2 13.7 -302.6 272.5 70 -618.9 ·	-41.2 889.0 114.8 332.4 3 -659.4	200.0 349.9 29.0 -254 499.8

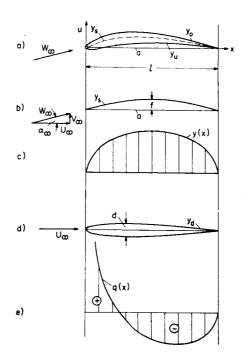
TABLE 18

TABLE 18


TABLES OF THE RESULTING DOWNMASH FUNCTIONS ACCORDING TO EQUATION (65) FOR THE THREE COMMENT POINTS

β _s ,					1/2 = 2.0	······································			t/	≀ = 1.5				t/2 :	1.25		
deg	λ, deg	X l	10 ³ f*0		10 ³ f* ₇₂	10 ³ f* ₇ 3	10 ³ g _{q0} *	10 ³ f* ₇ 0	10 ³ f ₇ 1	10 ³ f ₇₂ *	10 ³ f* ₇₃	10 ³ g _{q0}	10 ³ f*70	10 ⁵ f ₇ 1	10 ³ f ₇₂ *	10 ³ f* ₇₃	10 ³ g _{q0}
		<u>5</u> 12	-1,001	549	-548	-1,002	2,100	-1,004	585	-582	-1,005	2,174	-1,007	619	-615	-1,009	2,244
90	0	12 7 12	-1,131	-183	-994	483	765	-1,226	-195	-1,030	483	836	-1,320	-207	-1,065	485	905
		12	-1,250	-914	343	188	-578	-1,418	-971	313	193	-524	-1,573	-1,025	286	198	-477
		<u>3</u>	-1,001	543	-542	-1,001	2,087	-1,002	576	-574	-1,003	2,153	-1,004	607	-604	-1,006	2,218
105 or	±15	工业	-1,116	-181	-987	482	754	-1,203	-192	-1,020	483	819	-1,286	-203	-1,052	484	881
75		끄	-1,224	-905	348	187	-585	-1,382	-957	319	191	-532	-1,526	-1,007	293	195	-488
		<u>3</u> 12	-1,000	526	-526	-1,000	2,052	-1,000	548	-548	-1,000	2,097	-1,000	570	-570	-999	2,140
120 or	±30	7 12	-1,070	-175	-970	482	720	-1,129	-183	-991	482	764	-1,190	-190	-1,013	481	809
60		11 12	-1,146	-878	362	185	-610	-1,267	-915	340	185	-563	-1,386	-952	317	185	-518
		<u>3</u> 12	-1,000	502	-503	-999	2,004	-998	506	-508	-9 96	2,011	-994	512	-516	991	2,020
135 or	±45	12	-1,005	-167	-946	481	671	-1,017	-168	-948	480	681	-1,035	-170	-952	479	695
45		11	-1,026	-838	384	183	-651	-1,080	-848	374	178	-617	-1,154	-863	358	172	-573
		<u>5</u> 12	-1,000	476	-476	-999	1,951	-997	460	461	-1,000	1,917	-995	445	449	-992	1,886
150 or	±60	12	-935	-159	-920	-481	618	-893	-153	-903	480	587	-854	-148	-886	479	558
30		112 12	-882	-794	411	183	-706	-828	-770	421	178	-713	-817	-752	423	168	-688
165		3 12	-1,000	455	-455	-1,000	1,909	-1,001	418	-419	-1,001	1,836	-1,002	380	-381	-1,002	1,762
or 15	±75	7. 12	-878	-152	-900	482	575	-780	-139	-865	482	501	-677	-127	-829	482	424
		11 12	-749	-757	435	185	-765	-1,541	-69 5	-474	186	-849	-340	-631	513	186	-923
β _B ,	7.		t/l = 1.0				. t/l = 0.75					t/1 = 0.5					
deg	ر ر deg	ì	10 ³ f ₇₀	103f*1	103f*2	103173	103g	10 ³ f ₇ 0	10 ³ f ₇ 1	10 ³ f ₇₂	10 ⁵ f* ₇₅	103g _{QO}	103170	10 ³ f ₇ 1	105f ₇₂	10 ³ f* ₇ 3	10 ⁵ g _{q0}
		3 12	-1,008	682	-670	-1,019	2,372	-1,035	794	-776	-1,045	2,623	-1,118	1,059	-1,011	-1,133	3,236
ı				°04					l	, ,,-	-1,047	1				1	
90	٥	7 12	-1,476	-228	-1,129	489	1,021	-1,778	-269	-1,257	500	1,241	-2,457	-362	-1,567	539	1,734
90	0	7 12 11 12	'		-1,129 242	489 210	1,021 -415	-1,778 -2,271	-269 -1,292	ł	1	1,241 -314	-2,457 -3,252	-362 -1,680	-1,567 36	559 319	1,754 -149
	0	7 12 11 12 3 12	-1,476	-228				1		-1,257	500 240 -1,033		(ł	-983	1	-149 3,138
105 or	t15	12 12 12 3 12 7 12	-1,476 -1,830	-228 -1,122	242	210	-415	-2,271	-1,292 770 -260	-1,257 171 -756 -1,227	500 240 -1,033 494	-314 2,564 1,199	-3,232 -1,091 -2,372	-1,680 1,023 -350	-983 -1,518	-1,110 -528	-149 3,138 1,673
105		7 12 11 12 3 12	-1,476 -1,830 -1,009	-228 -1,122 662	242 -665	210	-415 2,332	-2,271 -1,025	-1,292 770	-1,257 171 -756	500 240 -1,033	-314 2,564	-3,252 -1,091	-1,680 1,023	-983	-1,110	-149 3,138
105 or 75		12 12 12 12 12 12 12 12 12	-1,476 -1,830 -1,009 -1,432	-228 -1,122 662 -222	-665 -1,110	210 -1,013 486	-415 2,332 989	-2,271 -1,025 -1,718	-1,292 770 -260	-1,257 171 -756 -1,227	500 240 -1,033 494	-314 2,564 1,199	-3,232 -1,091 -2,372	-1,680 1,023 -350	-983 -1,518	-1,110 -528	-149 3,138 1,673
105 or 75		7 12 11 12 3 12 7 12 1 12 1 12 1 12 1 12	-1,476 -1,830 -1,009 -1,432 -1,766	-228 -1,122 662 -222 -1,093	242 -665 -1,110 252	210 -1,013 486 205 -998 480	-415 2,332 989 -419 2,219 893	-2,271 -1,025 -1,718 -2,205	-1,292 770 -260 -1,258	-1,257 171 -756 -1,227 178 -695 -1,138	500 240 -1,055 494 251 -1,000 479	-314 2,564 1,199 -312 2,393 1,070	-3,232 -1,091 -2,372 -3,132 -1,013 -2,122	-1,680 1,023 -350 -1,638 918 -313	36 -983 -1,518 42 895 -1,379	319 -1,110 -528 305 -1,042 492	-149 3,138 1,673 -145 2,853 1,497
105 or 75	±15	12 12 12 12 11 12 12 11 12 11 12	-1,476 -1,830 -1,009 -1,432 -1,766	-228 -1,122 662 -222 -1,093	242 -665 -1,110 252 -610	210 -1,013 486 205 -998	-415 2,332 989 -419 2,219	-2,271 -1,025 -1,718 -2,205	-1,292 . 770 -260 -1,258	-1,257 171 -756 -1,227 178	500 240 -1,033 494 231 -1,000	-314 2,564 1,199 -312 2,393	-3,232 -1,091 -2,372 -3,132 -1,013	-1,680 1,023 -350 -1,638 918	-983 -1,518 42 895	-1,110 -528 305 -1,042	-149 3,138 1,673 -145 2,853
105 or 75 120 or 60	±15	12 11 12 3 12 1 12 12 12 12 12 12 12 12 12 12 12 1	-1,476 -1,830 -1,009 -1,432 -1,766 -997 -1,298	-228 -1,122 662 -222 -1,093 611 -203	242 -665 -1,110 252 -610 -1,051	210 -1,013 486 205 -998 480 188	-415 2,332 989 -419 2,219 893 -445 2,046	-2,271 -1,025 -1,718 -2,205 -999 -1,537 -1,977	-1,292 770 -260 -1,258 697 -254 -1,155	-1,257 171 -756 -1,227 178 -695 -1,138 203	500 240 -1,033 494 231 -1,000 479 2,016	-514 2,564 1,199 -512 2,393 1,070 -334 2,123	-3,232 -1,091 -2,372 -3,132 -1,013 -2,122 -2,806	-1,680 1,023 -350 -1,638 918 -313 -1,485	36 -983 -1,518 42 895 -1,379 65	319 -1,110 -528 305 -1,042 492 267	-149 3,138 1,673 -145 2,853 1,497 -165 2,394
105 or 75 120 or 60	±15	12 11 12 3 12 1 12 1 12 1 12 1 12 1 12	-1,476 -1,830 -1,009 -1,432 -1,766 -997 -1,298 -1,592	-228 -1,122 662 -222 -1,093 611 -203 -1,018	242 -665 -1,110 252 -610 -1,051 276	210 -1,013 486 205 -998 480 188	-415 2,332 989 -419 2,219 893 -445	-2,271 -1,025 -1,718 -2,205 -999 -1,537 -1,977	-1,292 .770 -260 -1,258 697 -234 -1,155	-1,257 171 -756 -1,227 178 -695 -1,138 203	500 240 -1,033 494 231 -1,000 479 2,016 -957 461	-514 2,564 1,199 -312 2,393 1,070 -354	-5,252 -1,091 -2,372 -3,132 -1,013 -2,122 -2,806	-1,680 1,023 -350 -1,638 918 -313 -1,485 745 -250	36 -983 -1,518 42 895 -1,379 65 -756 -1,149	319 -1,110 -528 305 -1,042 492 267 -934 433	-149 3,138 1,675 -145 2,853 1,497 -165 2,394 1,217
105 or 75 120 or 60	±15	12 11 12 3 12 1 12 12 12 12 12 12 12 12 12 12 12 1	-1,476 -1,830 -1,009 -1,432 -1,766 -997 -1,298 -1,592	-228 -1,122 662 -222 -1,093 611 -203 -1,018	242 -665 -1,110 252 -610 -1,051 276	210 -1,013 486 205 -998 480 188	-415 2,332 989 -419 2,219 893 -445 2,046	-2,271 -1,025 -1,718 -2,205 -999 -1,537 -1,977	-1,292 770 -260 -1,258 697 -254 -1,155	-1,257 171 -756 -1,227 178 -695 -1,138 203	500 240 -1,033 494 231 -1,000 479 2,016	-514 2,564 1,199 -512 2,393 1,070 -334 2,123	-5,232 -1,091 -2,372 -5,132 -1,013 -2,122 -2,806 -904 -1,716	-1,680 1,023 -350 -1,638 918 -313 -1,485	36 -983 -1,518 42 895 -1,379 65	319 -1,110 -528 305 -1,042 492 267	-149 3,138 1,673 -145 2,853 1,497 -165 2,394
105 or 75 120 or 60	±15	122 122 122 122 122 122 122 122 122 122	-1,476 -1,830 -1,009 -1,432 -1,766 -997 -1,298 -1,592 -986 -1,084	-228 -1,122 662 -222 -1,093 611 -203 -1,018 530 -175	242 -665 -1,110 252 -610 -1,051 276 -537 -963 324 -435	210 -1,013 486 205 -998 480 188 980 474	-415 2,332 989 -419 2,219 893 -445 2,046 735	-2,271 -1,025 -1,718 -2,205 -999 -1,537 -1,977 -961 -1,234	-1,292 770 -260 -1,258 697 -234 -1,155 581 -191 -990	-1,257 171 -756 -1,227 178 -695 -1,138 203 -594 -998 -249	-1,033 494 231 -1,000 479 2,016 -957 461 148	-514 2,564 1,199 -512 2,393 1,070 -354 2,123 853 -347	-5,252 -1,091 -2,372 -3,132 -1,013 -2,122 -2,806 -904 -1,716 -2,300 -776	-1,680 1,023 -350 -1,638 918 -313 -1,485 745 -250 -1,238	36 -983 -1,518 42 895 -1,379 65 -756 -1,149 101 -581	319 -1,110 -528 305 -1,042 492 267 -934 433 196 -783	-149 3,138 1,675 -145 2,853 1,497 -165 2,394 1,217 -177 1,800
105 or 75 120 or 60	±15	122 122 122 122 122 122 122 122 122 122	-1,476 -1,830 -1,009 -1,432 -1,766 -997 -1,298 -1,592 -986 -1,084 -1,308 -984 -799	-228 -1,122 662 -222 -1,093 611 -203 -1,018 530 -175 -899 425 -139	242 -665 -1,110 252 -610 -1,051 276 -537 -965 324 -435 -857	210 -1,013 486 205 -998 480 188 980 474 161 -975	2,332 989 -419 2,219 893 -445 2,046 735 -491 1,855 522	-2,271 -1,025 -1,718 -2,205 -999 -1,537 -1,977 -961 -1,234 -1,654	-1,292 770 -260 -1,258 697 -234 -1,155 581 -191 -990 419 -130	-1,257 171 -756 -1,227 178 -695 -1,138 203 -594 -998 -249 -450 -815	500 240 -1,033 494 231 -1,000 479 2,016 -957 461 148 -914 -454	-514 2,564 1,199 -512 2,393 1,070 -334 2,123 853 -347 -1,782 532	-5,252 -1,091 -2,372 -3,132 -1,013 -2,122 -2,806 -904 -1,716 -2,300 -776 -1,196	-1,680 1,023 -350 -1,638 918 -313 -1,485 745 -250 -1,238 512 -165	36 -983 -1,518 42 895 -1,379 65 -756 -1,149 101 -581 -850	319 -1,110 -528 305 -1,042 492 267 -934 433 196 -783 355	-149 5,138 1,675 -145 2,853 1,497 -165 2,394 1,217 -177 1,800 867
105 or 75 120 or 60 135 or 45	±15	122 112 112 112 112 112 112 112 112 112	-1,476 -1,830 -1,009 -1,432 -1,766 -997 -1,298 -1,592 -986 -1,084 -1,308	-228 -1,122 662 -222 -1,093 611 -203 -1,018 530 -175 -899	242 -665 -1,110 252 -610 -1,051 276 -537 -963 324 -435	210 -1,013 486 205 -998 480 188 980 474 161 -975	-415 2,332 989 -419 2,219 893 -445 2,046 735 -491 1,855	-2,271 -1,025 -1,718 -2,205 -999 -1,537 -1,977 -961 -1,234 -1,634 -944 -792 -1,186	-1,292 770 -260 -1,258 697 -234 -1,155 581 -191 -990	-1,257 171 -756 -1,227 178 -695 -1,138 203 -594 -998 -249 -450 -815 316	500 240 -1,033 494 231 -1,000 479 2,016 -957 461 148 -914 -454 76	-314 2,564 1,199 -312 2,393 1,070 -334 2,123 853 -347 -1,782 532 -349	-3,252 -1,091 -2,372 -3,132 -1,013 -2,122 -2,806 -904 -1,716 -2,300 -776 -1,196 -1,651	-1,680 1,023 -350 -1,638 918 -313 -1,485 745 -250 -1,238 512 -165 -918	36 -983 -1,518 42 895 -1,379 65 -756 -1,149 101 -581 -830 141	319 -1,110 -528 305 -1,042 492 267 -934 433 196 -783 3555 98	-149 3,138 1,675 -145 2,893 1,497 -165 2,394 1,217 -177 1,800 867 -186
105 or 75 120 or 60 135 or 45	±15	12 112 112 112 112 112 112 112 112 112	-1,476 -1,830 -1,009 -1,432 -1,766 -997 -1,298 -1,592 -986 -1,084 -1,308 -984 -799 -902 -1,004	-228 -1,122 -662 -222 -1,093 -611 -203 -1,018 -530 -175 -899 -425 -139 -738 -510	242 -665 -1,110 252 -610 -1,051 276 -537 -963 324 -435 -857 404	210 -1,013 486 205 -998 480 188 980 474 161 -975 474 136 -1,004	-415 2,332 989 -419 2,219 893 -445 2,046 735 -491 1,835 522 -575 1,624	-2,271 -1,025 -1,718 -2,205 -999 -1,537 -1,977 -961 -1,234 -1,634 -944 -792 -1,186	-1,292 770 -260 -1,258 697 -254 -1,155 581 -191 -990 419 -130 -768	-1,257 171 -756 -1,227 178 -695 -1,138 203 -594 -998 -249 -450 -815 316	500 240 -1,033 494 231 -1,000 479 2,016 -957 461 148 -914 -454 76	-514 2,564 1,199 -512 2,393 1,070 -354 2,123 853 -347 -1,782 532 -349	-3,252 -1,091 -2,372 -3,132 -1,013 -2,122 -2,806 -904 -1,716 -2,300 -776 -1,196 -1,651	-1,680 1,023 -350 -1,638 918 -313 -1,485 745 -250 -1,238 512 -165 -918	36 -983 -1,518 42 895 -1,379 65 -756 -1,149 101 -581 -830 141	319 -1,110 -528 305 -1,042 492 267 -934 433 196 -783 355 98	-149 3,138 1,675 -145 2,853 1,497 -165 2,394 1,217 -177 1,800 867 -186
105 or 75 120 or 60	±15	122 112 112 112 112 112 112 112 112 112	-1,476 -1,830 -1,009 -1,432 -1,766 -997 -1,298 -1,592 -986 -1,084 -1,308 -984 -799 -902 -1,004	-228 -1,122 -662 -222 -1,093 -11 -203 -1,018 -530 -175 -899 -258 -139 -758	242 -665 -1,110 252 -610 -1,051 276 -537 -963 324 -435 -857 404	210 -1,013 486 205 -998 480 188 980 474 161 -975 474 136	-415 2,332 989 -419 2,219 893 -445 2,046 735 -491 1,855 522 -575 1,624 278	-2,271 -1,025 -1,718 -2,205 -999 -1,537 -1,977 -961 -1,234 -1,634 -944 -792 -1,186	-1,292 770 -260 -1,258 697 -254 -1,155 581 -191 -990 419 -130 -768	-1,257 171 -756 -1,227 178 -695 -1,138 203 -594 -998 -249 -450 -815 316	500 240 -1,033 494 231 -1,000 479 2,016 -957 461 148 -914 -454 76	-314 2,564 1,199 -312 2,393 1,070 -334 2,123 853 -347 -1,782 532 -349	-3,252 -1,091 -2,372 -3,132 -1,013 -2,122 -2,806 -904 -1,716 -2,300 -776 -1,196 -1,651 -697 -682	-1,680 1,023 -350 -1,638 918 -313 -1,485 745 -250 -1,238 512 -165 -918	36 -983 -1,518 42 895 -1,379 65 -756 -1,149 101 -581 -830 141	319 -1,110 -528 305 -1,042 492 267 -934 433 196 -783 3555 98	-149 3,138 1,675 -145 2,893 1,497 -165 2,394 1,217 -177 1,800 867 -186

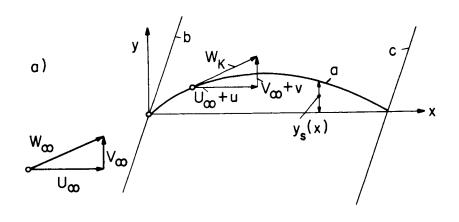
	βs				
7	10 ³ £ ₇ 0	10 ³ f ₇ 1	10 ³ f ₇₂	10 ³ £ ₇₃	10 ³ 8q0
3	-1,000	500	-500	-1,000	2,000
7	-1,000	-167	-944	482	667
11	-1,000	-833	389	185	-667

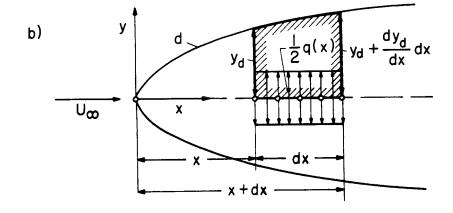


- (a) Velocity diagram.
- (b) Cascade.
- (c) Blade with pressure distribution.

Figures l(a) to (c)

Main symbols on the blade cascade: a blade of the cascade; b cascade front or direction of cascade front; c mean camber line; d pressure side; e suction side; l length of blade chord; t spacing; λ angle of stagger (negative, since shown as a turbine cascade); $\beta_S = 90^{\circ} + \lambda$ blade angle; x coordinate in the direction of l; y coordinate perpendicular to the direction of l; p_1 static pressure far in front of the cascade; p_2 static pressure sure far behind the cascade; p_2 static pressure along the blade contour; β_1 inflow angle; β_2 outflow angle; β_{∞} angle of the translational velocity W_{∞} with respect to b; U_{∞} component of W_{∞} in the x-direction; V_{∞} component of W_{∞} in the y-direction; W_1 inflow velocity far in front of the cascade; W_2 outflow velocity far behind the cascade; A lift (resultant force on a blade in frictionless flow) with the components; T parallel to b; and N perpendicular to b.




- (a) Blade profile.
- (b) Mean camber line.
- (c) Representation of the mean camber line by a vortex distribution.
- (d) Uncambered profile (thickness distribution).
- (e) Representation of the thickness distribution by a source distribution.

Figures 2(a) to (e)

Subdivision of a profile into mean camber line and thickness distribution according to equations (1) and (2). x, y, l, W_{∞} , U_{∞} , and V_{∞} as in figures 1(a) to 1(c); a blade chord; $y_{\rm S}$ coordinate of the mean camber line; $y_{\rm O}$ coordinate of the upper side of the blade; $y_{\rm U}$ coordinate of the lower side of the blade; $y_{\rm d}$ coordinate of the uncambered profile (thickness distribution) in the y-direction; d maximum thickness of the uncambered profile; f maximum displacement of the mean camber line (camber); α_{∞} angle between W_{∞} and a; $\gamma(x)$ vortex distribution (circulation per unit length); and q(x) source distribution (plus sign for sources, minus sign for sinks).

- (a) Mean camber line profile (first condition).
- (b) Uncambered profile (thickness distribution, second condition).

Figures 3(a) and (b)

On the derivation of the kinematic flow conditions. x, y, U_{∞} , V_{∞} , W_{∞} as in figure 1; a mean camber line with the ordinate $y_s(x)$; b cascade front; c cascade-outflow plane; d uncambered profile with the ordinate $y_d(x)$; and q(x) source distribution.

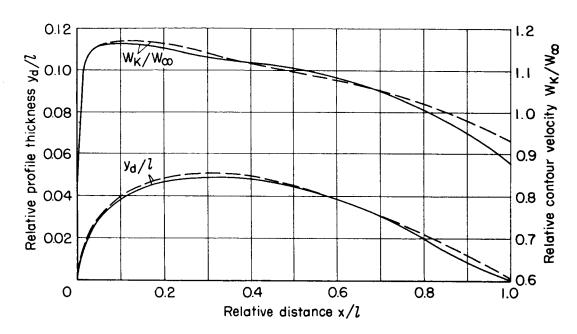


Figure 4. - Thickness distribution and contour-velocity distribution for symmetrical approach flow for the NACA 0010 profile as a single profile. (Solid curves for approximation according to equation (40) and to equations (37) and (38), dashed curves for actual variations.)

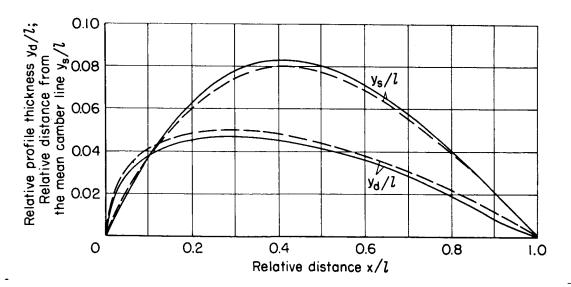


Figure 5. - Thickness and camber distribution for the NACA 8410 profile. Solid curves for approximation, dashed curves for actual variations.

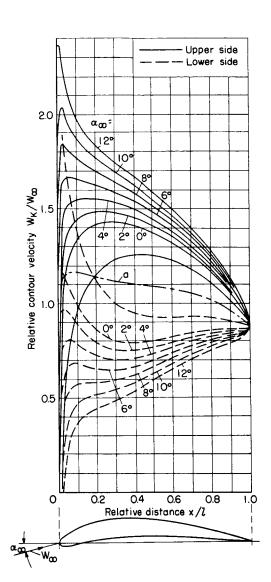
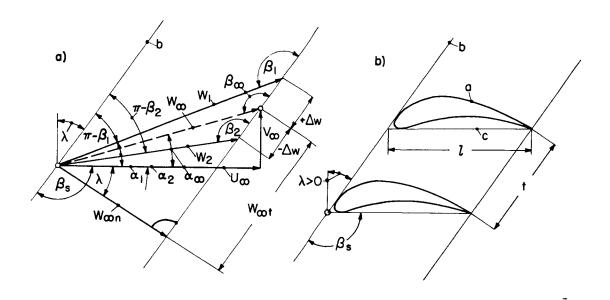
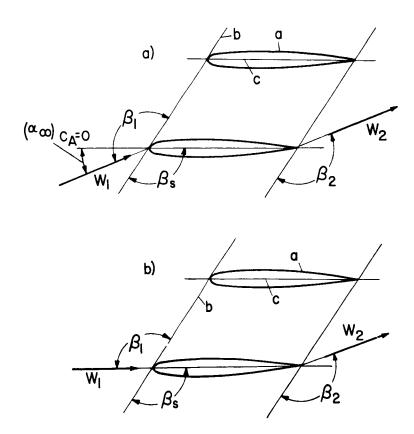



Figure 6.- Distribution of the contour velocity for the NACA 8410 profile at various angles of attack α_{∞} . Curve a corresponds to the coordinated symmetrical profile for symmetrical approach flow. W_{\infty} approach-flow velocity; lift coefficient c_A and angle-of-attack parameter K = tan $\alpha_{\infty} = V_{\infty}/U_{\infty}$ according to:

α_{∞}	-7.3° (zero lift)	00	20 (shock-free inflow)	4 ⁰	6 ⁰	8°	10 ⁰	12 ⁰
cA	0	0.80	1.01	1.24	1.46	1.67	1.88	2.10
K	-0.130	0	0.034	0.040	0.105	0.141	0.177	0.213



- (a) Velocity diagram.
- (b) Cascade.

Figures 7(a) and (b)

Velocity diagram for the staggered two-dimensional cascade. a, b, l, t, and λ are positive since drawn as a compressor cascade. β_S , β_1 , β_2 , β_{∞} , W_{∞} , W_{∞} , W_{∞} , W_1 , and W_2 are the same as in figure 1. Furthermore, c is chord; α_1 is angle between c and W_1 ; α_2 is angle between c and W_2 ; $W_{\infty n}$ is component of W_{∞} normal to b; $W_{\infty t}$ is component of W_{∞} tangential to b; and $\frac{1}{2}\Delta w$ is induced velocity parallel to b far in front of the cascade and far behind it, respectively.

- (a) Cascade free from deflection (with W_1 parallel to W_2 , $\beta_1 > \beta_s$, and pertaining angle of attack $(\alpha_{\infty})_{c_A} = 0$ according to equation (95)).
- (b) Cascade with inflow parallel to the chord (deflection toward the cascade front).

Figures 8(a) and (b)

Staggered cascade of symmetrical profiles. a profile; b cascade front; c chord; W_1 inflow velocity; W_2 outflow velocity; β_1 inflow angle; β_2 outflow angle; and β_s blade angle (angle between c and b).

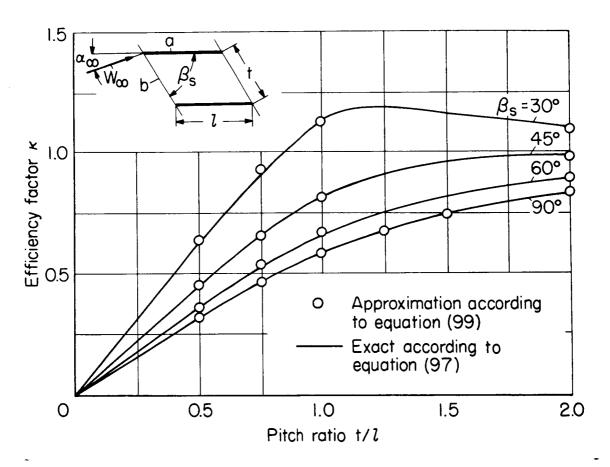


Figure 9. - Dependence of the efficiency factor κ for the lift increase, according to equation (97), on the pitch ratio t/l for the flat-plate cascade. a flat plate; b cascade front; l length of blade chord; t spacing; $\beta_{\rm S}$ angle between chord and b; W_{∞} translational velocity; and α_{∞} angle of attack.

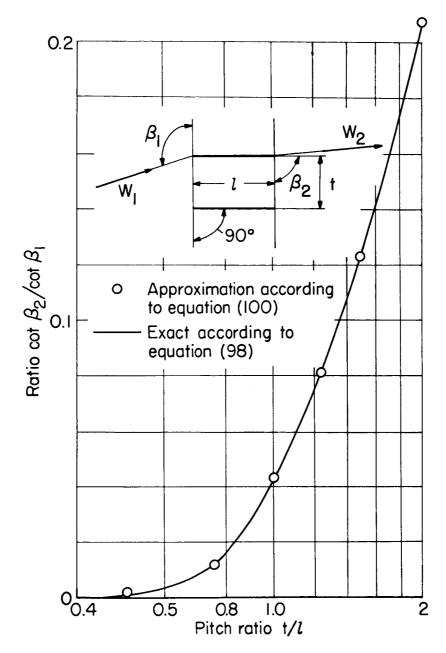


Figure 10.- Dependence of the ratio $\cot \beta_2/\cot \beta_1$ on the pitch ratio for the unstaggered plate cascade. (Symbols as in figures 1(a) to (c).)

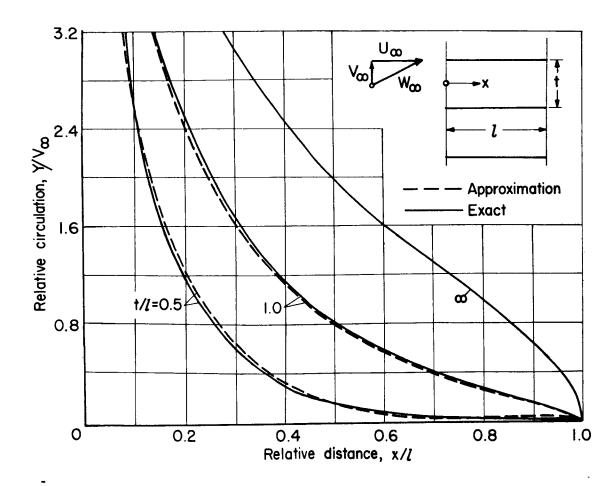


Figure 11.- Circulation distribution over the length of the plate chord for the unstaggered plate cascade. (Symbols as in figures 1(a) to (c); for $t/l = \infty$, approximate and exact solutions coincide.)

•••••

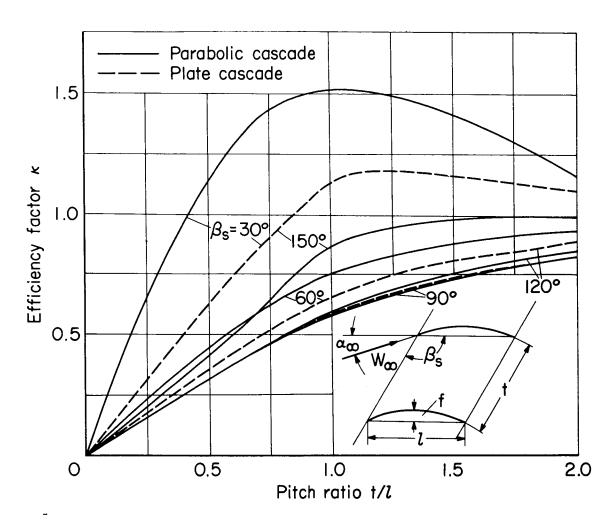


Figure 12.- Dependence of the efficiency factor $_{\rm K}$ for the lift increase according to equation (97) on the pitch ratio $\,{\rm t}/{\it l}\,$ for parabolic cascades of the camber ratio $\,\frac{\rm f}{\it l}=0.1\,$ compared to the results for plate cascades. (Symbols as in figure 2(b); for plate cascades, the same variation results for $\beta_{\rm S}=30^{\rm O}$ and 150°, and for $60^{\rm O}$ and $120^{\rm O}$, respectively.)

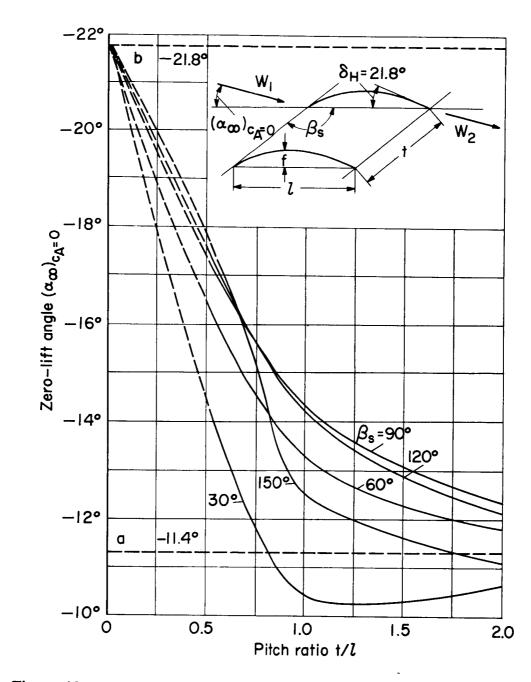


Figure 13. - Dependence of the zero-lift angle on the pitch ratio for parabolic cascades with the camber ratio $\frac{f}{l}=0.1$, for various blade angles β_S . a value of the single blade; b value for blade-congruent flow; other symbols as in figure 2(b).

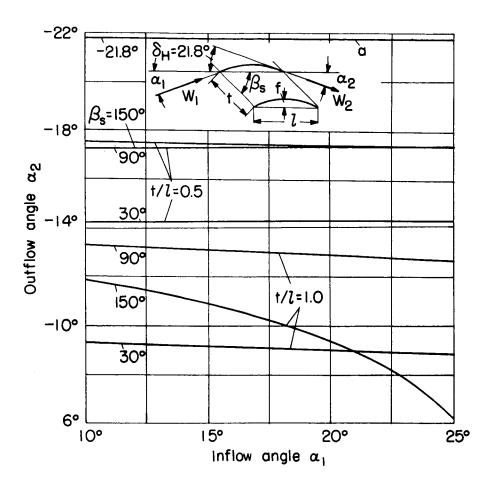
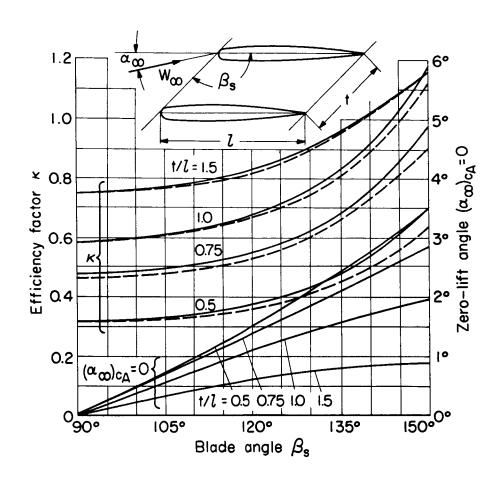
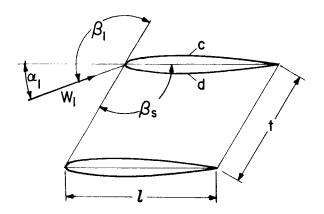
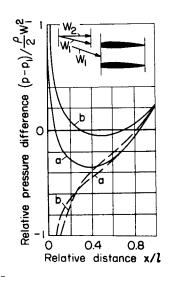
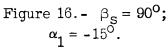


Figure 14.- Dependence of the outflow angle α_2 on the inflow angle α_1 for parabolic cascades with the camber ratio $\frac{f}{l}=0.1$ for various blade angles β_S and pitch ratios t/l. a value for blade-congruent flow; δ_H trailing-edge angle; other symbols as in figures 7(a) and (b).


Figure 15.- Dependence of the efficiency factor κ for the lift increase according to equation (97) and of the zero-lift angle $(\alpha_{\infty})_{\text{CA}=0}$ on the blade angle β_{S} for various pitch ratios t/l for cascades of blades with NACA 0010 profiles. (Symbols as in figure 2(b); solid curves for NACA 0010 profile, dashed curves for plate cascades, for comparison.)

Explanatory sketch to figures 16 to 24

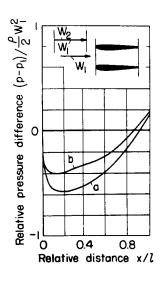


Figure 17.-
$$\beta_S = 90^{\circ}$$
; $\alpha_1 = 0^{\circ}$.

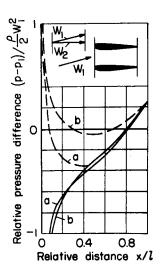


Figure 18.- $\beta_S = 90^\circ$; $\alpha_1 = 15^\circ$.

Figures 16 to 24

Pressure distributions on the blade contours for cascades of blades with NACA 0010 profiles. Curve a for pitch ratio $\frac{t}{l} = 0.5$; curve b for pitch ratio $\frac{t}{l} = 1.0$; solid curves for the upper side c of profile; and dashed curves for the lower side d of profile. (The cascade arrangements sketched apply for $\frac{t}{l} = 0.5$; the velocity diagrams apply for both pitch ratios.)

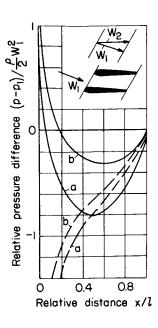


Figure 19.-
$$\beta_S = 120^{\circ}$$
; $\alpha_1 = -15^{\circ}$.

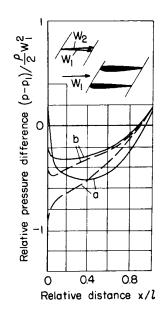


Figure 20.- $\beta_s = 120^\circ$; $\alpha_1 = 0^\circ$.

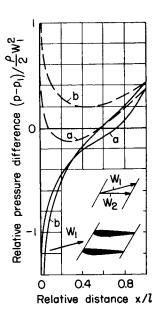


Figure 21.- $\beta_S = 120^{\circ}$; $\alpha_1 = 15^{\circ}$.

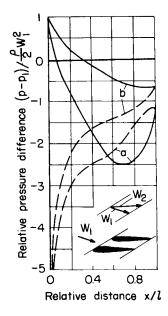


Figure 22.- $\beta_s = 150^{\circ}$; $\alpha_1 = -15^{\circ}$.

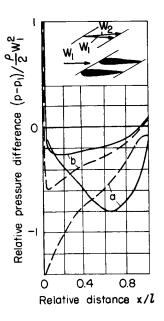


Figure 23.- $\beta_{S} = 150^{\circ}$; $\alpha_{1} = 0^{\circ}$.

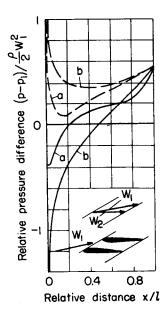


Figure 24.- $\beta_S = 150^{\circ}$; $\alpha_1 = 10^{\circ}$.

(See preceding page for further information.)

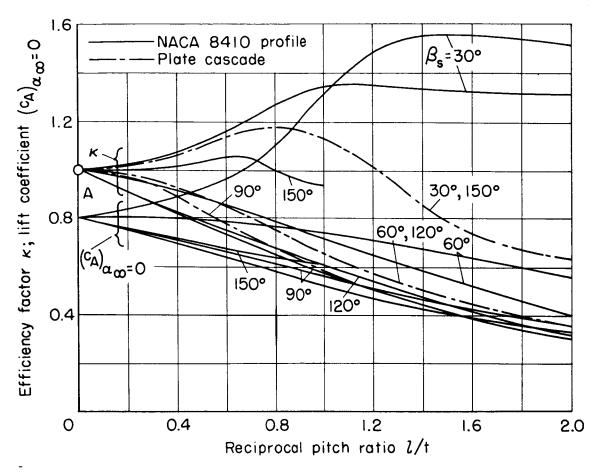


Figure 25. - Variation of the efficiency factor κ (lift increase relative to the value of the single blade), according to equation (97), and of the lift coefficient $(c_A)_{\alpha_{\infty}=0}$ against the reciprocal pitch ratio l/t for various blade angles $\beta_S = 90^{\circ} + \lambda$ for cascades of blades with NACA 8410 profiles. (For comparison, the variation of κ was plotted also for plate cascades. A is the point corresponding to the single blade.)

Figures 26 to 30

Angle exaggeration δ for cascades of blades with NACA 8410 profiles. (Compare also figures 1(a) and 7(a).) Inflow angle $\beta_1=\beta_5+\alpha_1$ (angle between W_1 and b); angle exaggeration $\delta=\beta_2-\beta_H=\alpha_2+12.9^\circ$ (angle between the outflow velocity W_2 and the tangent c to the mean camber line at the trailing edge) with $\beta_2=\beta_5-12.9^\circ+\delta$ as the outflow angle (angle between W_2 and b); β_H as the trailing-edge angle (angle between c and b); and with angle of attack α_2 as the angle between W_2 and a.

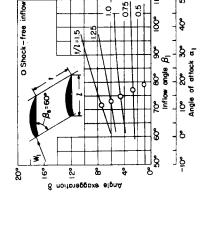


Figure 27.- Variation for $\beta_S = 60^{\circ}$.

Figure 26. - Variation for $\beta_S = 30^{\circ}$.

O Shock-free inflow

ຂໍ້

9

å

<u></u>

8 nationages

ş

60° 80° Inflow angle $eta_{
m l}$


ş

స్ట్రీ

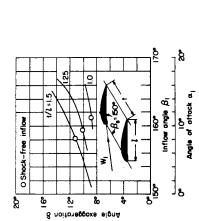
ઢ

\$

O 20 40 60 ε Angle of affack α₁

စ္လိ

20° O Shock-free inflow


9

82

8 noitoraggeze algnA

ಹಿ

Figure 28. - Variation for $\beta_S = 90^{\circ}$.

‡

Figure 30. - Variation for $\beta_S = 150^{\circ}$.

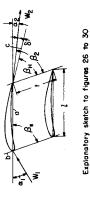


Figure 29. - Variation for $\beta_S = 120^{\circ}$.

Angle of attack a

<u></u>]

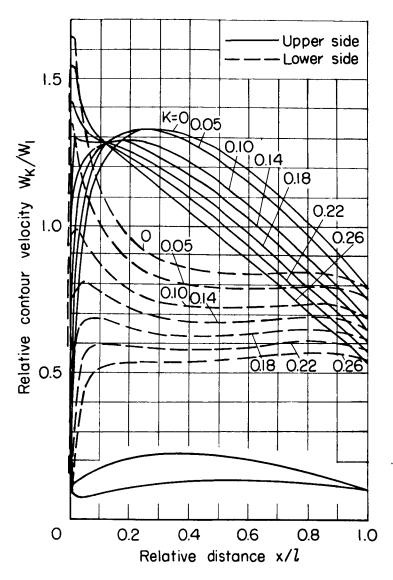
Inflow angle $eta_{\mathbf{i}}$

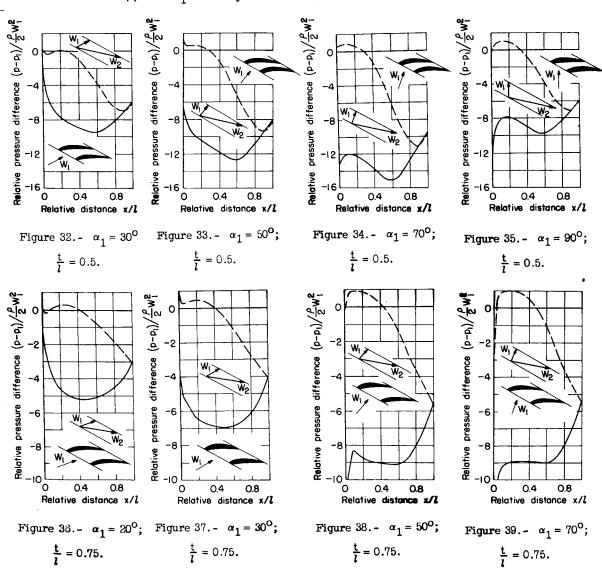
Š

8

ò

= 120° Figure 30. - Va.



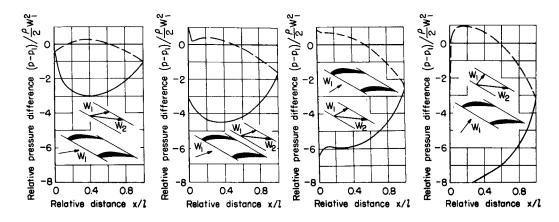
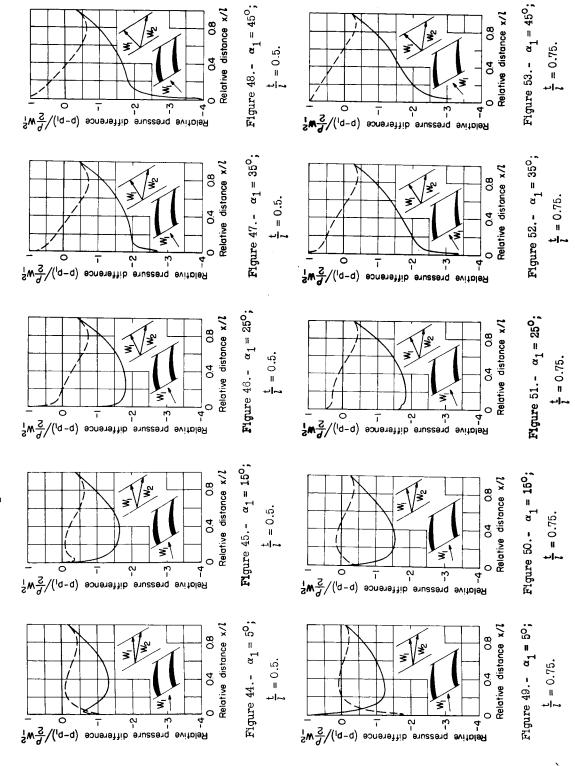

Figure 31.- Velocity distribution on the blade contour for the calculation example treated later in section 7.2 (compare table 15). NACA 8410 blade profile, pitch ratio $\frac{t}{l} = 0.75$, blade angle $\beta_{\rm S} = 120^{\rm O}$; values of K = tan α_{∞} for angle of attack α_{∞} according to:

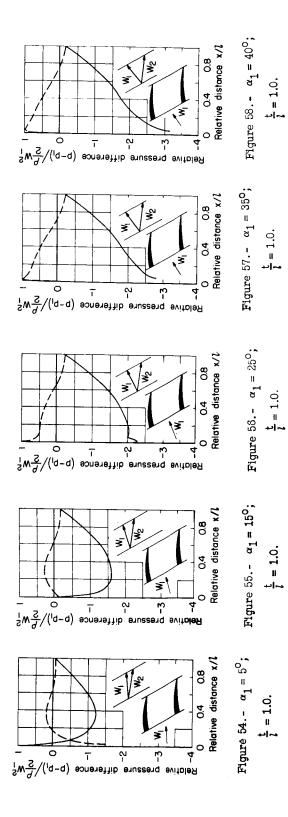
K	0	0.05	0.10	0.14	0.18	0.22	0.26
α_{∞}	00	2.9°	5 . 7°	8.0°	10.2°	12.40	14.6 ⁰

Angle of attack for shock-free inflow $\alpha_{\infty st} = 6.7^{\circ}$.

Figures 32 to 43

Pressure distribution on the blade contour for cascades of blades with NACA 8410 profiles, for a blade angle $\,\beta_{\rm S}=30^{\circ}$. (Solid curves for upper side, dashed curves for lower side of the profile; x, l, p, p₁, p, and W₁ as in figures 16 to 24.)

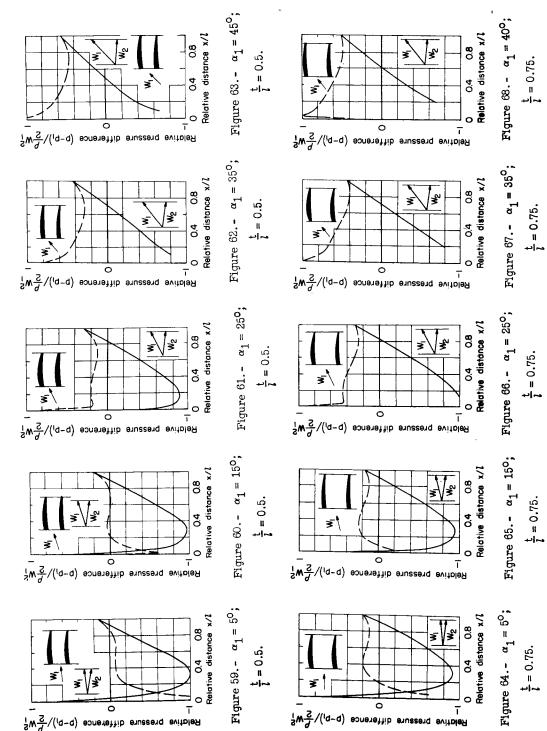



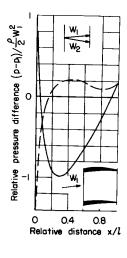

Figure 40.-
$$\alpha_1 = 10^{\circ}$$
; Figure 41.- $\alpha_1 = 20^{\circ}$; Figure 42.- $\alpha_1 = 30^{\circ}$; Figure 43.- $\alpha_1 = 50^{\circ}$; $\frac{t}{l} = 1.0$. $\frac{t}{l} = 1.0$. $\frac{t}{l} = 1.0$.

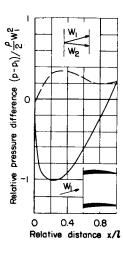
(See preceding page for further information.)

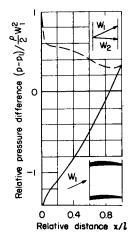
Figures 44 to 58

Pressure distribution on the blade contour for cascades of blades with NACA 8410 profiles, for a blade angle $\beta_{\rm S}=60^{\circ}$. (Solid curves for upper side, dashed curves for lower side of profile; x, l, p, p, and W_1 as in figures 16 to 24.)




(See preceding page for further information.)


Figures 59 to 72


Pressure distribution on the blade contour for cascades of blades with NACA 8410 profiles, for a blade angle $\beta_{\rm S}=90^{\rm O}$. (Solid curves for upper side, dashed curves for lower side of profile; x, l, p, p₁, p, and W₁ as in figures 16 to 24.)

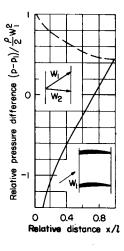
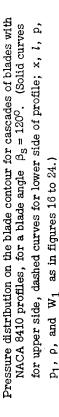
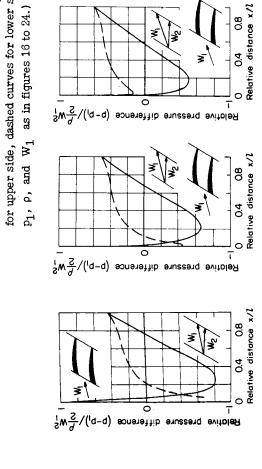


Figure 69.-
$$\alpha_1 = 5^{\circ}$$
; $\frac{t}{l} = 1.0$.

Figure 70. -
$$\alpha_1 = 15^{\circ}$$
; $\frac{t}{l} = 1.0$.

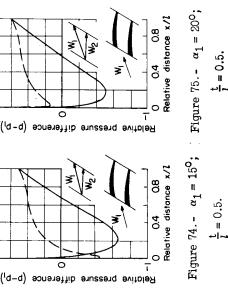
Figure 71.-
$$\alpha_1 = 25^{\circ}$$
; $\frac{t}{l} = 1.0$.

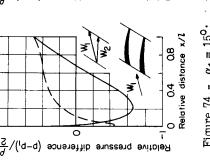

Figure 72. -
$$\alpha_1 = 35^{\circ}$$
; $\frac{t}{l} = 1.0$.


(See preceding page for further information.)

for upper side, dashed curves for lower side of profile; x, l, p,

Figures 73 to 85

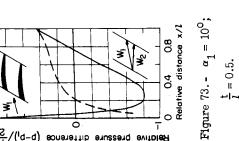


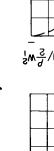


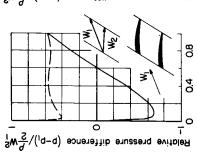
0 $\frac{Q}{1} \frac{Q}{N} \sqrt{(Q-Q)}$ eorened difference of polynomials $\frac{Q}{N} = \frac{Q}{N}$

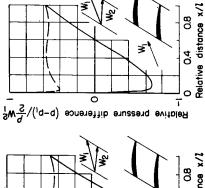
Ö

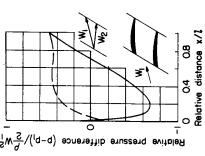
Relative pressure difference (p-p₁) $\sqrt{\frac{\rho}{S}}$ $\sqrt{\frac{\rho}{S}}$



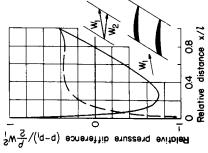

Figure 77. - $\alpha_1 = 30^{\circ}$;

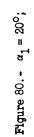

Figure 76. - $\alpha_1 = 25^{\circ}$;

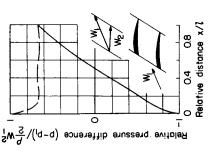

0 0.4 0.5 Relative distance x/l

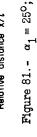

1

0 0.4 0.0 Relative distance x/1






Figure 79. - $\alpha_1 = 15^{\circ}$;


Figure 78.- $\alpha_1 = 10^{\circ}$;

 $\frac{1}{7} = 0.75$.

 $\frac{1}{7} = 0.75$.

 $\frac{1}{7} = 0.75$.

 $\frac{1}{7} = 0.75$.

Figure 82. •
$$\alpha_1 = 10^{\circ}$$
; $\frac{t}{l} = 1.0$.

Figure 83.-
$$\alpha_1 = 15^{\circ}$$
; $\frac{t}{l} = 1.0$.

Figure 84. -
$$\alpha_1 = 20^{\circ}$$
; $\frac{t}{l} = 1.0$.

Figure 85.-
$$\alpha_1 = 25^{\circ}$$
; $\frac{t}{l} = 1.0$.

(See preceding page for further information.)

Pressure distribution on the blade contour for cascades of blades with NACA 8410 profiles, for a blade angle $\beta_{\rm S}=150^{\rm O}$. (Solid curves for upper side, dashed curves for lower side of profile; x, l, p, p₁, ρ , and W₁ as in figures 16 to 24.)

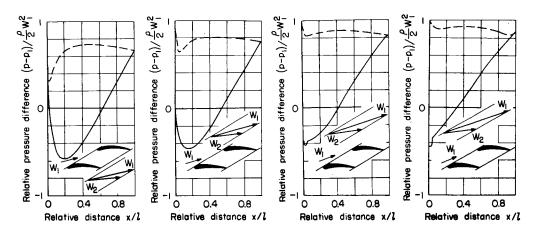
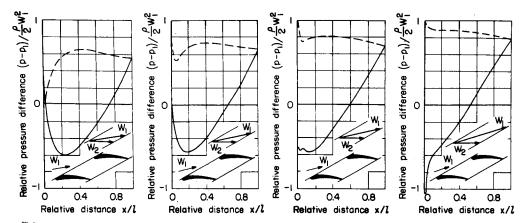
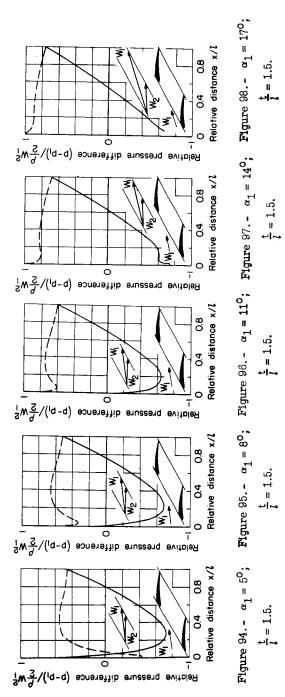
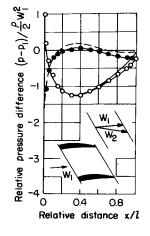
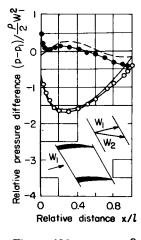


Figure 86. - $\alpha_1 = 11^{\circ}$; Figure 87. - $\alpha_1 = 14^{\circ}$; Figure 88. - $\alpha_1 = 17^{\circ}$; Figure 89. - $\alpha_1 = 19^{\circ}$; $\frac{t}{l} = 1.0$. $\frac{t}{l} = 1.0$. $\frac{t}{l} = 1.0$.


Figure 90. - $\alpha_1 = 8^{\circ}$; Figure 91. - $\alpha_1 = 11^{\circ}$; Figure 92. - $\alpha_1 = 14^{\circ}$; Figure 93. - $\alpha_1 = 17^{\circ}$; $\frac{t}{l} = 1.25$. $\frac{t}{l} = 1.25$. $\frac{t}{l} = 1.25$.


0

(See preceding page for further information.)

Comparison of measured and calculated pressure distributions on the blade contour for cascades of blades with NACA 8410 profiles, for a pitch ratio $\frac{t}{l}=1.0$. Measurements for a Reynolds number $W_2\frac{l}{v}\approx 6\times 10^5$; solid curves calculated for upper side of profile a, dashed curves for lower side of profile b, curves with open circles for measured variation on upper side of profile, curves with filled-in circles for measured variation on lower side of profile, point for beginning of the separation denoted by A.

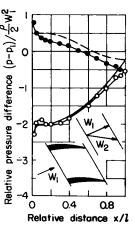
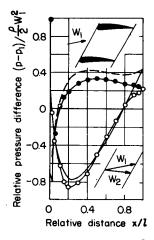
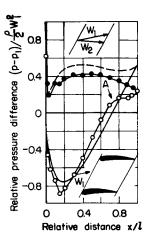




Figure 99. -
$$\alpha_1 = 5^{\circ}$$
; $\beta_S = 60^{\circ}$.

Figure 100. -
$$\alpha_1 = 15^{\circ}$$
; $\beta_s = 60^{\circ}$.

Figure 101. - $\alpha_1 = 25^{\circ}$; $\beta_S = 60^{\circ}$.

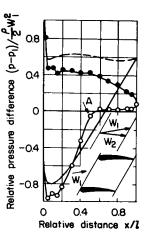
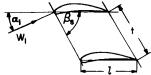
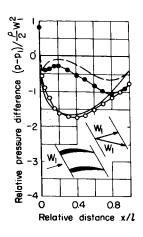
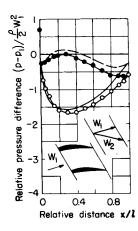
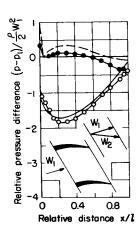



Figure 102. - $\alpha_1 = 10^{\circ}$; $\beta_S = 120^{\circ}$.

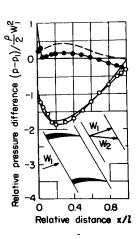
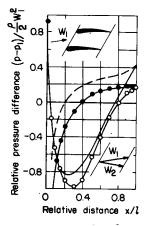

Figure 103. -
$$\alpha_1 = 15^{\circ}$$
; $\beta_S = 120^{\circ}$.

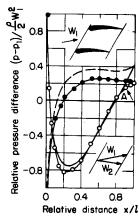

Figure 104. - $\alpha_1 = 20^{\circ}$; $\beta_S = 120^{\circ}$.

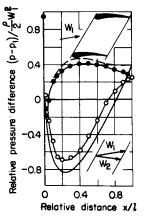


Explanatory sketch to figures 99 to 104

Comparison of measured and calculated pressure distributions on the blade contour for cascades of blades with NACA 8410 profiles, for various pitch ratios t/l, blade angles β_S , and angles of attack α_1 . (Symbols and explanations as in figures 99 to pO4; measurements at a Reynolds number $W_2 \frac{l}{v} \approx 6 \times 10^5$.)


Figure 105. -
$$\frac{t}{l} = 0.5$$
;
 $\beta_S = 60^\circ$; $\alpha_1 = 15^\circ$.


Figure 106. -
$$\frac{t}{l} = 0.7$$

 $\beta_S = 60^{\circ}$; $\alpha_1 = 15^{\circ}$.

Figure 106. -
$$\frac{t}{l} = 0.75$$
; Figure 107. - $\frac{t}{l} = 1.25$; $\beta_{\rm S} = 60^{\rm O}$; $\alpha_{\rm l} = 15^{\rm O}$. $\beta_{\rm S} = 60^{\rm O}$; $\alpha_{\rm l} = 15^{\rm O}$.

Figure 108. -
$$\frac{t}{l} = 1.5$$
;
 $\beta_S = 60^\circ$; $\alpha_1 = 15^\circ$.

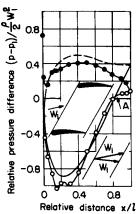
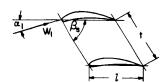



Figure 109. - $\frac{t}{l} = 0.5$; $\beta_S = 120^\circ$; $\alpha_1 = 10^\circ$.

Figure 110. -
$$\frac{t}{l} = 0.75$$
;
 $\beta_S = 120^\circ$; $\alpha_1 = 10^\circ$.

Figure 111. -
$$\frac{t}{l}$$
 = 1.25;
 $\beta_S = 120^\circ$; $\alpha_1 = 10^\circ$.

Figure 112. -
$$\frac{t}{l} = 1.5$$
; $\beta_S = 120^\circ$; $\alpha_1 = 10^\circ$.

Explanatory sketch to figures 105 to 112